Advertisement

Archives of Virology

, Volume 156, Issue 4, pp 659–669 | Cite as

Whole-genome analysis of a human rabies virus from Sri Lanka

  • Takashi Matsumoto
  • Kamruddin AhmedEmail author
  • Omala Wimalaratne
  • Kentaro Yamada
  • Susilakanthi Nanayakkara
  • Devika Perera
  • Dushantha Karunanayake
  • Akira Nishizono
Original Article

Abstract

The complete genome sequence of a human rabies virus, strain H-08-1320, from Sri Lanka was determined and compared with other rabies viruses. The size of the genome was 11,926 nt, and it was composed of a 58-nucleotide 3′ leader, five protein genes – N (1353 nt), P (894 nt), M (609 nt), G (1575 nt), and L (6387 nt) – and a 70-nt 5′ trailer. The intergenic region G–L contained 515 nt. The sizes of the nucleoprotein, phosphoprotein, matrix-protein, glycoprotein and large-protein was 450, 296, 202, 524 and 2,128 residues, respectively. The phosphoprotein and large protein were one amino acid shorter and longer, respectively, than those of most rabies viruses. The glycoprotein of H-08-1320 had a unique amino acid substitution at antigenic site I. Whole-genome phylogenetic analysis showed that strain H-08-1320 formed an independent lineage and did not cluster with rabies viruses from other countries.

Keywords

Rabies Complete Genome Sequence Vaccine Strain Rabies Virus Antigenic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by a Grant-in-Aid Scientific Research B from Japan Society for the Promotion of Sciences; grant number: 20406026.

Supplementary material

705_2010_905_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
705_2010_905_MOESM2_ESM.docx (34 kb)
Supplementary material 2 (DOCX 33 kb)

References

  1. 1.
    Anzal J, Takamatsu F, Takeuchi K, Kohno T, Morimoto K, Goto H, Minamoto N, Kawai A (1997) Identification of a phosphatase-sensitive epitope of rabies virus nucleoprotein which is recognized by a monoclonal antibody 5-2-26. Microbiol Immunol 41:229–240PubMedGoogle Scholar
  2. 2.
    Arai YT, Takahashi H, Kameoka Y, Shiino T, Wimalaratne O, Lodmell DL (2001) Characterization of Sri Lanka rabies virus isolates using nucleotide sequence analysis of nucleoprotein gene. Acta Virol 45:327–333PubMedGoogle Scholar
  3. 3.
    Bakker AB, Marissen WE, Kramer RA, Rice AB, Weldon WC, Niezgoda M, Hanlon CA, Thijsse S, Backus HH, de Kruif J, Dietzschold B, Rupprecht CE, Goudsmit J (2005) Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J Virol 79:9062–9068PubMedCrossRefGoogle Scholar
  4. 4.
    Bourhy H, Reynes JM, Dunham EJ, Dacheux L, Larrous F, Huong VT, Xu G, Yan J, Miranda ME, Holmes EC (2008) The origin and phylogeography of dog rabies virus. J Gen Virol 89:2673–2681PubMedCrossRefGoogle Scholar
  5. 5.
    Chenik M, Chebli K, Gaudin Y, Blondel D (1994) In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites on P protein. J Gen Virol 75(Pt 11):2889–2896PubMedCrossRefGoogle Scholar
  6. 6.
    Chenik M, Chebli K, Blondel D (1995) Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol 69:707–712PubMedGoogle Scholar
  7. 7.
    Chenik M, Schnell M, Conzelmann KK, Blondel D (1998) Mapping the interacting domains between the rabies virus polymerase and phosphoprotein. J Virol 72:1925–1930PubMedGoogle Scholar
  8. 8.
    Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499PubMedCrossRefGoogle Scholar
  9. 9.
    Coulon P, Ternaux JP, Flamand A, Tuffereau C (1998) An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol 72:273–278PubMedGoogle Scholar
  10. 10.
    Cox JH, Dietzschold B, Schneider LG (1977) Rabies virus glycoprotein. II. Biological and serological characterization. Infect Immun 16:754–759PubMedGoogle Scholar
  11. 11.
    de Kruif J, Bakker AB, Marissen WE, Kramer RA, Throsby M, Rupprecht CE, Goudsmit J (2007) A human monoclonal antibody cocktail as a novel component of rabies postexposure prophylaxis. Annu Rev Med 58:359–368PubMedCrossRefGoogle Scholar
  12. 12.
    Dietzschold B, Lafon M, Wang H, Otvos L Jr, Celis E, Wunner WH, Koprowski H (1987) Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Res 8:103–125PubMedCrossRefGoogle Scholar
  13. 13.
    Dietzschold B, Ertl HC (1991) New developments in the pre- and post-exposure treatment of rabies. Crit Rev Immunol 10:427–439PubMedGoogle Scholar
  14. 14.
    Du J, Zhang Q, Tang Q, Li H, Tao X, Morimoto K, Nadin-Davis SA, Liang G (2008) Characterization of human rabies virus vaccine strain in China. Virus Res 135:260–266PubMedCrossRefGoogle Scholar
  15. 15.
    Ertl HC, Dietzschold B, Gore M, Otvos L Jr, Larson JK, Wunner WH, Koprowski H (1989) Induction of rabies virus-specific T-helper cells by synthetic peptides that carry dominant T-helper cell epitopes of the viral ribonucleoprotein. J Virol 63:2885–2892PubMedGoogle Scholar
  16. 16.
    Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B (2004) Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci USA 101:16328–16332PubMedCrossRefGoogle Scholar
  17. 17.
    Finke S, Conzelmann KK (2003) Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 77:12074–12082PubMedCrossRefGoogle Scholar
  18. 18.
    Finke S, Mueller-Waldeck R, Conzelmann KK (2003) Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84:1613–1621PubMedCrossRefGoogle Scholar
  19. 19.
    Geue L, Schares S, Schnick C, Kliemt J, Beckert A, Freuling C, Conraths FJ, Hoffmann B, Zanoni R, Marston D, McElhinney L, Johnson N, Fooks AR, Tordo N, Muller T (2008) Genetic characterisation of attenuated SAD rabies virus strains used for oral vaccination of wildlife. Vaccine 26:3227–3235PubMedCrossRefGoogle Scholar
  20. 20.
    Gigant B, Iseni F, Gaudin Y, Knossow M, Blondel D (2000) Neither phosphorylation nor the amino-terminal part of rabies virus phosphoprotein is required for its oligomerization. J Gen Virol 81:1757–1761PubMedGoogle Scholar
  21. 21.
    Goto H, Minamoto N, Ito H, Luo TR, Sugiyama M, Kinjo T, Kawai A (1995) Expression of the nucleoprotein of rabies virus in Escherichia coli and mapping of antigenic sites. Arch Virol 140:1061–1074PubMedCrossRefGoogle Scholar
  22. 22.
    Goto H, Minamoto N, Ito H, Ito N, Sugiyama M, Kinjo T, Kawai A (2000) Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J Gen Virol 81:119–127PubMedGoogle Scholar
  23. 23.
    Gupta AK, Blondel D, Choudhary S, Banerjee AK (2000) The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol 74:91–98PubMedCrossRefGoogle Scholar
  24. 24.
    Harty RN, Paragas J, Sudol M, Palese P (1999) A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929PubMedGoogle Scholar
  25. 25.
    Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, Whitt MA, Schnell MJ (2001) Rhabdoviruses and the cellular ubiquitin–proteasome system: a budding interaction. J Virol 75:10623–10629PubMedCrossRefGoogle Scholar
  26. 26.
    Ito N, Moseley GW, Blondel D, Shimizu K, Rowe CL, Ito Y, Masatani T, Nakagawa K, Jans DA, Sugiyama M (2010) Role of interferon antagonist activity of rabies virus phosphoprotein in viral pathogenicity. J Virol 84(13):6699–6710PubMedCrossRefGoogle Scholar
  27. 27.
    Ito N, Kakemizu M, Ito KA, Yamamoto A, Yoshida Y, Sugiyama M, Minamoto N (2001) A comparison of complete genome sequences of the attenuated RC-HL strain of rabies virus used for production of animal vaccine in Japan, and the parental Nishigahara strain. Microbiol Immunol 45:51–58PubMedGoogle Scholar
  28. 28.
    Ito Y, Nishizono A, Mannen K, Hiramatsu K, Mifune K (1996) Rabies virus M protein expressed in Escherichia coli and its regulatory role in virion-associated transcriptase activity. Arch Virol 141:671–683PubMedCrossRefGoogle Scholar
  29. 29.
    Jacob Y, Real E, Tordo N (2001) Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains. J Virol 75:9613–9622PubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi Y, Okuda H, Nakamura K, Sato G, Itou T, Carvalho AA, Silva MV, Mota CS, Ito FH, Sakai T (2007) Genetic analysis of phosphoprotein and matrix protein of rabies viruses isolated in Brazil. J Vet Med Sci Japanese Soc Vet Sci 69:1145–1154Google Scholar
  31. 31.
    Kouznetzoff A, Buckle M, Tordo N (1998) Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA. J Gen Virol 79(Pt 5):1005–1013PubMedGoogle Scholar
  32. 32.
    Lo KW, Naisbitt S, Fan JS, Sheng M, Zhang M (2001) The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 276:14059–14066PubMedCrossRefGoogle Scholar
  33. 33.
    Macfarlan RI, Dietzschold B, Wiktor TJ, Kiel M, Houghten R, Lerner RA, Sutcliffe JG, Koprowski H (1984) T cell responses to cleaved rabies virus glycoprotein and to synthetic peptides. J Immunol 133:2748–2752PubMedGoogle Scholar
  34. 34.
    Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Sawaki Y, Koyama H, Sugiyama M (2010) Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response 84:4002–4012Google Scholar
  35. 35.
    Mebatsion T, Weiland F, Conzelmann KK (1999) Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73:242–250PubMedGoogle Scholar
  36. 36.
    Metlin A, Paulin L, Suomalainen S, Neuvonen E, Rybakov S, Mikhalishin V, Huovilainen A (2008) Characterization of Russian rabies virus vaccine strain RV-97. Virus Res 132:242–247PubMedCrossRefGoogle Scholar
  37. 37.
    Minamoto N, Tanaka H, Hishida M, Goto H, Ito H, Naruse S, Yamamoto K, Sugiyama M, Kinjo T, Mannen K et al (1994) Linear and conformation-dependent antigenic sites on the nucleoprotein of rabies virus. Microbiol Immunol 38:449–455PubMedGoogle Scholar
  38. 38.
    Ming P, Du J, Tang Q, Yan J, Nadin-Davis SA, Li H, Tao X, Huang Y, Hu R, Liang G (2009) Molecular characterization of the complete genome of a street rabies virus isolated in China. Virus Res 143:6–14PubMedCrossRefGoogle Scholar
  39. 39.
    Mita T, Shimizu K, Ito N, Yamada K, Ito Y, Sugiyama M, Minamoto N (2008) Amino acid at position 95 of the matrix protein is a cytopathic determinant of rabies virus. Virus Res 137:33–39PubMedCrossRefGoogle Scholar
  40. 40.
    Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518PubMedGoogle Scholar
  41. 41.
    Nadin-Davis SA, Huang W, Wandeler AI (1997) Polymorphism of rabies viruses within the phosphoprotein and matrix protein genes. Arch Virol 142:979–992PubMedCrossRefGoogle Scholar
  42. 42.
    Nadin-Davis SA, Abdel-Malik M, Armstrong J, Wandeler AI (2002) Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. Virology 298:286–305PubMedCrossRefGoogle Scholar
  43. 43.
    Nagaraja T, Madhusudana S, Desai A (2008) Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes 36:449–459PubMedCrossRefGoogle Scholar
  44. 44.
    Nagarajan T, Nagendrakumar SB, Mohanasubramanian B, Rajalakshmi S, Hanumantha NR, Ramya R, Thiagarajan D, Srinivasan VA (2009) Phylogenetic analysis of nucleoprotein gene of dog rabies virus isolates from Southern India. Infect Genet Evol 9:976–982PubMedCrossRefGoogle Scholar
  45. 45.
    Nanayakkara S, Smith JS, Rupprecht CE (2003) Rabies in Sri Lanka: splendid isolation. Emerg Infect Dis 9:368–371PubMedGoogle Scholar
  46. 46.
    Pandit A, Sinha S (2010) Using genomic signatures for HIV-1 sub-typing. BMC Bioinformatics 11(Suppl 1):S26PubMedCrossRefGoogle Scholar
  47. 47.
    Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71(Pt 5):1153–1162PubMedCrossRefGoogle Scholar
  48. 48.
    Prehaud C, Coulon P, LaFay F, Thiers C, Flamand A (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62:1–7PubMedGoogle Scholar
  49. 49.
    Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216PubMedCrossRefGoogle Scholar
  50. 50.
    Schnell MJ, Conzelmann KK (1995) Polymerase activity of in vitro mutated rabies virus L protein. Virology 214:522–530PubMedCrossRefGoogle Scholar
  51. 51.
    Smith JS, Orciari LA, Yager PA, Seidel HD, Warner CK (1992) Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. J Infect Dis 166:296–307PubMedCrossRefGoogle Scholar
  52. 52.
    Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N (2006) Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res 115:169–175PubMedCrossRefGoogle Scholar
  53. 53.
    Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1988) Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576PubMedCrossRefGoogle Scholar
  54. 54.
    Tuffereau C, Leblois H, Benejean J, Coulon P, Lafay F, Flamand A (1989) Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172:206–212PubMedCrossRefGoogle Scholar
  55. 55.
    Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79:12554–12565PubMedCrossRefGoogle Scholar
  56. 56.
    Wiktor TJ, Gyorgy E, Schlumberger D, Sokol F, Koprowski H (1973) Antigenic properties of rabies virus components. J Immunol 110:269–276PubMedGoogle Scholar
  57. 57.
    Yang J, Koprowski H, Dietzschold B, Fu ZF (1999) Phosphorylation of rabies virus nucleoprotein regulates viral RNA transcription and replication by modulating leader RNA encapsidation. J Virol 73:1661–1664PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Takashi Matsumoto
    • 1
  • Kamruddin Ahmed
    • 2
    Email author
  • Omala Wimalaratne
    • 3
  • Kentaro Yamada
    • 2
  • Susilakanthi Nanayakkara
    • 3
  • Devika Perera
    • 3
  • Dushantha Karunanayake
    • 3
  • Akira Nishizono
    • 1
  1. 1.Department of Microbiology, Faculty of MedicineOita UniversityYufuJapan
  2. 2.Research Promotion ProjectOita UniversityYufuJapan
  3. 3.Rabies LaboratoryMedical Research InstituteColomboSri Lanka

Personalised recommendations