Archives of Virology

, 156:739

Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome

  • Wayne L. Gray
  • Fuchun Zhou
  • Juliane Noffke
  • B. Karsten Tischer
Original Article

Abstract

Simian varicella virus (SVV) is closely related to human varicella-zoster virus and causes varicella and zoster-like disease in nonhuman primates. In this study, a mini-F replicon was inserted into a SVV cosmid, and infectious SVV was generated by co-transfection of Vero cells with overlapping SVV cosmids. The entire SVV genome, cloned as a bacterial artificial chromosome (BAC), was stably propagated upon serial passage in E. coli. Transfection of pSVV-BAC DNA into Vero cells yielded infectious SVV (rSVV-BAC). The mini-F vector sequences flanked by loxP sites were removed by co-infection of Vero cells with rSVV-BAC and adenovirus expressing Cre-recombinase. Recombinant SVV generated using the SVV-BAC genetic system has similar molecular and in vitro replication properties as wild-type SVV. To demonstrate the utility of this approach, a SVV ORF 10 deletion mutant was created using two-step Red-mediated recombination. The results indicate that SVV ORF 10, which encodes a homolog of the HSV-1 virion VP-16 transactivator protein, is not essential for in vitro replication but is required for optimal replication in cell culture.

References

  1. 1.
    Adler H, Messerle M, Wagner M, Koszinowski UH (2000) Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974PubMedCrossRefGoogle Scholar
  2. 2.
    Allen WP, Felsenfeld AD, Wolf RH, Smetana HF (1974) Recent studies on the isolation and characterization of delta herpesvirus. Lab Anim Sci 24:222–228PubMedGoogle Scholar
  3. 3.
    Cohen JI, Seidel K (1994) Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro. J Virol 68:7850–7858PubMedGoogle Scholar
  4. 4.
    Ferrin LJ, Camerini-Otero RD (1991) Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science 254:1494–1497PubMedCrossRefGoogle Scholar
  5. 5.
    Fletcher TM III, Gray WL (1992) Simian varicella virus: characterization of virion and infected cell polypeptides and the antigenic cross-reactivity with varicella-zoster virus. J Gen Virol 73:1209–1215PubMedCrossRefGoogle Scholar
  6. 6.
    Gray WL (2003) Pathogenesis of simian varicella virus. J Med Virol 70:S4–S8PubMedCrossRefGoogle Scholar
  7. 7.
    Gray WL (2004) Simian varicella: a model for human varicella-zoster virus infections. Rev Med Virol 14:363–381PubMedCrossRefGoogle Scholar
  8. 8.
    Gray WL (2008) Simian varicella in Old World monkeys. Comp Med 58:22–30PubMedGoogle Scholar
  9. 9.
    Gray WL, Davis K, Ou Y, Ashburn C, Ward TM (2007) Simian varicella virus gene 61 encodes a viral transactivator but is non-essential for in vitro replication. Arch Virol 152:553–563PubMedCrossRefGoogle Scholar
  10. 10.
    Gray WL, Mahalingam R (2005) A cosmid-based system for inserting mutations and foreign genes into the simian varicella virus genome. J Virol Methods 130:89–94PubMedCrossRefGoogle Scholar
  11. 11.
    Gray WL, Oakes JE (1984) Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology 136:241–246PubMedCrossRefGoogle Scholar
  12. 12.
    Gray WL, Pumphrey CY, Ruyechan WT, Fletcher TM (1992) The simian varicella virus and varicella zoster virus genomes are similar in size and structure. Virology 186:562–572PubMedCrossRefGoogle Scholar
  13. 13.
    Gray WL, Starnes B, White MW, Mahalingam R (2001) The DNA sequence of the simian varicella virus genome. Virology 284:123–130PubMedCrossRefGoogle Scholar
  14. 14.
    Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369PubMedCrossRefGoogle Scholar
  15. 15.
    Mahalingam R, Smith D, Wellish M, Wolf W, Dueland AN, Cohrs R, Soike K, Gilden D (1991) Simian varicella virus DNA in dorsal root ganglia. Proc Natl Acad Sci USA 88:2750–2752PubMedCrossRefGoogle Scholar
  16. 16.
    Mahalingam R, Traina-Dorge V, Wellish M, Lorino R, Sanford R, Ribka EP, Alleman SJ, Brazeau E, Gilden DH (2007) Simian varicella reactivation in cynomolgus monkeys. Virology 368:50–59PubMedCrossRefGoogle Scholar
  17. 17.
    Moriuchi H, Moriuchi M, Pichyangkura R, Triezenberg SJ, Straus SE, Cohen JI (1995) Hydrophobic cluster analysis predicts an amino-terminal domain of varicella-zoster virus open reading frame 10 required for transcriptional activation. Proc Natl Acad Sci USA 92:9333–9337PubMedCrossRefGoogle Scholar
  18. 18.
    Moriuchi H, Moriuchi M, Straus SE, Cohen JI (1993) Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67:2739–2746PubMedGoogle Scholar
  19. 19.
    Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K (2004) Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine 22:4069–4074PubMedCrossRefGoogle Scholar
  20. 20.
    Ou Y, Gray WL (2006) The simian varicella virus gene 28 and 29 promoters share a common USF binding site and are induced by IE62 transactivation. J Gen Virol 87:1501–1508PubMedCrossRefGoogle Scholar
  21. 21.
    Ou Y, Traina-Dorge V, Davis KA, Gray WL (2007) Recombinant simian varicella vaccines induce immune responses to simian immunodeficiency virus (SIV) antigens in immunized vervet monkeys. Virology 364:291–300PubMedCrossRefGoogle Scholar
  22. 22.
    Pumphrey CY, Gray WL (1992) The genomes of simian varicella virus and varicella zoster virus are colinear. Virus Res 26:255–266PubMedCrossRefGoogle Scholar
  23. 23.
    Tischer BK, Kaufer BB, Somer M, Wussow F, Arvin AM, Osterrieder N (2007) A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 81:13200–13208PubMedCrossRefGoogle Scholar
  24. 24.
    Tischer BK, Smith G, Osterrieder N (2010) En passant mutagenesis—a two step markerless Red recombination system. In: Braman J (ed) In vitro mutagenesis protocols. Methods in molecular biology, 3rd edn, vol 634, pp 421–430Google Scholar
  25. 25.
    Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–196PubMedCrossRefGoogle Scholar
  26. 26.
    Ward TM, Traina-Dorge V, Davis KA, Gray WL (2008) Recombinant simian varicella viruses expressing respiratory syncytial virus antigens are immunogenic. J Gen Virol 89:741–750PubMedCrossRefGoogle Scholar
  27. 27.
    Ward TM, Williams MV, Traina-Dorge V, Gray WL (2009) The simian varicella virus uracil glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture. Virus Res 142:78–84PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshii H, Somboonthum P, Takahashi M, Yamanishi K, Mori Y (2007) Cloning of full length genome of varicella-zoster virus vaccine strain into a bacterial artificial chromosome and reconstitution of infectious virus. Vaccine 25:5006–5012PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Z, Huang Y, Zhu H (2008) A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system. J Virol Meth 148:197–204CrossRefGoogle Scholar
  30. 30.
    Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ (2002) Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 76:6185–6196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Wayne L. Gray
    • 1
  • Fuchun Zhou
    • 2
  • Juliane Noffke
    • 3
  • B. Karsten Tischer
    • 3
  1. 1.Department of Microbiology and Immunology, Slot 511University of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Tumor Virology Program, Department of Pediatrics, Greehey Children’s Cancer Research InstituteUniversity of Texas Health Science CenterSan AntonioUSA
  3. 3.Institute of VirologyFreie UniversitatBerlinGermany

Personalised recommendations