Archives of Virology

, Volume 155, Issue 6, pp 935–940 | Cite as

Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep sequencing

  • Fei Yan
  • Hengmu Zhang
  • Michael J. Adams
  • Jian Yang
  • Jiejun Peng
  • John F. Antoniw
  • Yijun Zhou
  • Jianping Chen
Original Article


RNA interference is a natural defense against viruses in plants. To date, the only viral siRNAs characterized have been those for positive-sense RNA viruses with one or two genome components. Here, we characterized siRNAs derived from rice stripe virus (RSV), a member of the genus Tenuivirus with four genomic RNAs and an ambisense coding strategy. Deep sequencing of small RNAs from infected rice leaves showed that siRNAs were derived almost equally from virion and complementary RNA strands and were mostly 20–22 nucleotides long. Most viral siRNAs were produced within the coding sequences and 5′ termini of the RSV genome. RSV siRNAs had a higher G and lower C content than the viral genome but a strong A/U bias at the first nucleotide and a U bias at the final one, suggesting preferential targeting of such sequences by rice Dicer-like proteins.



This work was financially supported by the State Basic Research Program of China (2010CB126203), an International Science and Technology Cooperation Project of the Ministry of Science and Technology of China (2007DFB30350), the State High-Tech Research and Development Program of China (2007AA10Z414), the National Natural Science Foundation of China (30771402), and the Natural Science Foundation of Zhejiang Province (Z305165, Y307169, Y3080417). Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.


  1. 1.
    Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471CrossRefPubMedGoogle Scholar
  2. 2.
    Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246CrossRefPubMedGoogle Scholar
  3. 3.
    Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356CrossRefPubMedGoogle Scholar
  4. 4.
    Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280CrossRefPubMedGoogle Scholar
  5. 5.
    Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71CrossRefPubMedGoogle Scholar
  6. 6.
    Dezulian T, Palatnik J, Huson DW (2005) Conservation and divergence of microRNA families in plants. Genome Biol 6:P13CrossRefGoogle Scholar
  7. 7.
    Ding SW, Li H, Lu R, Li F, Li WX (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102:109–115CrossRefPubMedGoogle Scholar
  8. 8.
    Donaire L, Barajas D, Martinez-Garcia B, Martinez-Priego L, Pagan I, Llave C (2008) Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol 82:5167–5177CrossRefPubMedGoogle Scholar
  9. 9.
    Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214CrossRefPubMedGoogle Scholar
  10. 10.
    Du QS, Duan CG, Zhang ZH, Fang YY, Fang RX, Xie Q, Guo HS (2007) DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. J Virol 81:9142–9151CrossRefPubMedGoogle Scholar
  11. 11.
    Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360CrossRefPubMedGoogle Scholar
  12. 12.
    Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423CrossRefPubMedGoogle Scholar
  13. 13.
    Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20CrossRefPubMedGoogle Scholar
  14. 14.
    Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590CrossRefPubMedGoogle Scholar
  15. 15.
    Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Levy S, Frazer KA (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10:R32CrossRefPubMedGoogle Scholar
  16. 16.
    Ho T, Rusholme Pilcher RL, Edwards ML, Cooper I, Dalmay T, Wang H (2008) Evidence for GC preference by monocot Dicer-like proteins. Biochem Biophys Res Commun 368:433–437CrossRefPubMedGoogle Scholar
  17. 17.
    Ho T, Wang H, Pallett D, Dalmay T (2007) Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett 581:3267–3272CrossRefPubMedGoogle Scholar
  18. 18.
    Liu B, Chen Z, Song X, Liu C, Cu X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718CrossRefPubMedGoogle Scholar
  19. 19.
    Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305CrossRefPubMedGoogle Scholar
  20. 20.
    Margis R, Fusaro AF, Smith N, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450CrossRefPubMedGoogle Scholar
  21. 21.
    Molnár A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818CrossRefPubMedGoogle Scholar
  22. 22.
    Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PloS ONE 4:e4971. doi: 10.1371/journal.pone.0004971 CrossRefPubMedGoogle Scholar
  23. 23.
    Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425CrossRefPubMedGoogle Scholar
  24. 24.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330CrossRefPubMedGoogle Scholar
  25. 25.
    Robbins AD (2004) GAWK: Effective AWK programming: a user’s guide for GNU Awk, 3 edn, Free Software Foundation.
  26. 26.
    Takasaki S, Kotani S, Konagaya A (2004) An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle 3:790–795PubMedGoogle Scholar
  27. 27.
    Toriyama S (1982) Three ribonucleic acids associate with rice stripe virus. Ann Phytopathol Soc Japan 48:482–489Google Scholar
  28. 28.
    Toriyama S, Watanbe Y (1989) Characterization of single- and double-stranded RNAs in particles of rice stripe virus. J Gen Virol 70:505–511CrossRefGoogle Scholar
  29. 29.
    Truss M, Swa M, Kielbasa SM, Schafe R, Herzel H, Hagemeier C (2005) HuSiDa—the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells. Nucleic Acids Res 33:D108–D111CrossRefPubMedGoogle Scholar
  30. 30.
    Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948CrossRefPubMedGoogle Scholar
  31. 31.
    Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771CrossRefPubMedGoogle Scholar
  32. 32.
    Wang HD, Chen JP, Zhang HM, Sun XL, Zhu JL, Wang AG, Sheng WX, Adams MJ (2008) Recent rice stripe virus epidemics in Zhejiang Province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis 92:1190–1196CrossRefGoogle Scholar
  33. 33.
    Wang MB, Metzlaff M (2005) RNA silencing and antiviral defense in plants. Curr Opin Plant Biol 8:216–222CrossRefPubMedGoogle Scholar
  34. 34.
    Wesley SV, Helliwell C, Wang MB, Waterhouse P (2004) Posttranscriptional gene silencing in plants Methods Mol Biol 265:117–129Google Scholar
  35. 35.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lelli AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang HM, Yang J, Sun HR, Xin X, Wang HD, Chen JP, Adams MJ (2007) Genomic analysis of rice stripe virus Zhejiang isolate shows the presence of an OTU-like domain in the RNA1 protein and a novel sequence motif conserved within the intergenic regions of ambisense segments of tenuiviruses. Arch Virol 152:1917–1923CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fei Yan
    • 1
  • Hengmu Zhang
    • 1
  • Michael J. Adams
    • 2
  • Jian Yang
    • 1
  • Jiejun Peng
    • 1
  • John F. Antoniw
    • 2
  • Yijun Zhou
    • 3
  • Jianping Chen
    • 1
  1. 1.Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouPeople’s Republic of China
  2. 2.Department of Plant Pathology and MicrobiologyRothamsted ResearchHertsUK
  3. 3.Institution of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China

Personalised recommendations