Archives of Virology

, Volume 155, Issue 5, pp 795–800 | Cite as

Comparisons among isolates of Sweet potato feathery mottle virus using complete genomic RNA sequences

  • S. Yamasaki
  • J. Sakai
  • S. Fuji
  • S. Kamisoyama
  • K. Emoto
  • K. Ohshima
  • K. Hanada
Brief Report


We determined the complete or partial nucleotide sequences of eight Sweet potato feathery mottle virus (SPFMV) isolates and compared them with 12 other partial SPFMV sequences. The genome organization of the isolate Bungo (strain group C) was very different from those of isolates in the russet crack, ordinary (O), and east Africa groups. 10-O appeared to be a recombinant of isolates S and O, with a recombination site within the P1 gene. This study will help to provide a better understanding of the taxonomy and biology of SPFMV and how these features relate to virulence.


Potyvirus Recombination Sequence Ipomoea batatas 



We are grateful that some of the DNA sequencing was performed at the Biotechnology Center of Akita Prefectural University.

Supplementary material

705_2010_633_MOESM1_ESM.pdf (7 kb)
Online Resource 1 (PDF 8 kb)
705_2010_633_MOESM2_ESM.pdf (7 kb)
Online Resource 2 (PDF 8 kb)


  1. 1.
    Adams MJ, Antoniw JF, Fauquet CM (2005) Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol 150:459–479CrossRefPubMedGoogle Scholar
  2. 2.
    Felsenstein J (2008) PHYLIP (Phylogeny Inference package) ver. 3.68. Last accessed date August 11, 2009. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  3. 3.
    Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582CrossRefPubMedGoogle Scholar
  4. 4.
    Gutièrrez D, Fuentes S, Salazar LF (2003) Sweet potato virus disease (SPVD): distribution, incidence, and effect on sweetpotato yield in Peru. Plant Dis 87:297–302CrossRefGoogle Scholar
  5. 5.
    Kreuze JF, Karyeija RF, Gibson RW, Valkonen JPT (2000) Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch Virol 145:567–574CrossRefPubMedGoogle Scholar
  6. 6.
    Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7CrossRefPubMedGoogle Scholar
  7. 7.
    Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-Infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160PubMedGoogle Scholar
  8. 8.
    Moyer JW, Kennedy GG, Abou-Ghadir MF (1980) Identification of two sweetpotato feathery mottle virus strains in North Carolina. Plant Dis 64:762–764Google Scholar
  9. 9.
    Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K, Gibbs AJ (2007) Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 88:298–315CrossRefPubMedGoogle Scholar
  10. 10.
    Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computer. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  11. 11.
    Sakai J, Mori M, Morishita T, Tanaka M, Hanada K, Usugi T, Nishiguchi M (1997) Complete nucleotide sequence and genome organization of sweet potato feathery mottle virus (S strain) genomic RNA: the large coding region of the P1 gene. Arch Virol 142:1553–1562CrossRefPubMedGoogle Scholar
  12. 12.
    Tairo F, Mukasa SB, Jones RAC, Kullaya A, Rubaihayo PB, Valkonen JPT (2005) Unraveling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD), and its practical implications. Mol Plant Pathol 6:199–211CrossRefGoogle Scholar
  13. 13.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  14. 14.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  15. 15.
    Untiveros M, Fuentes S, Kreuze J (2008) Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Arch Virol 153:473–483CrossRefPubMedGoogle Scholar
  16. 16.
    Yamasaki S, Sakai J, Kamisoyama S, Goto H, Okuda M, Hanada K (2009) Control of russet crack disease in sweetpotato plants using a protective mild strain of Sweet potato feathery mottle virus. Plant Dis 93:190–194CrossRefGoogle Scholar
  17. 17.
    Yamasaki S, Sakai J, Kamisoyama S, Hanada K (2009) The characterization of an isolate belonging to the common strain group of Sweet potato feathery mottle virus obtained from sweetpotato in Japan. Jpn J Phytopathol 75:156–163 (In Japanese)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Yamasaki
    • 1
  • J. Sakai
    • 2
  • S. Fuji
    • 3
  • S. Kamisoyama
    • 1
  • K. Emoto
    • 1
  • K. Ohshima
    • 4
  • K. Hanada
    • 5
  1. 1.Oita Prefectural Agriculture, Forestry and Fisheries Research CenterUsaJapan
  2. 2.National Agricultural Research Center for Tohoku RegionIwateJapan
  3. 3.Faculty of Bioresource SciencesAkita Prefectural UniversityAkitaJapan
  4. 4.Faculty of AgricultureSaga UniversitySagaJapan
  5. 5.National Agricultural Research CenterIbarakiJapan

Personalised recommendations