Archives of Virology

, Volume 155, Issue 5, pp 717–721

Molecular and genetic characteristics of hemagglutinin and neuraminidase in Iranian 2009 pandemic influenza A(H1N1) viruses

  • Nazanin Zahra Shafiei Jandaghi
  • Talat Mokhtari Azad
  • Maryam Naseri
  • Jila Yavarian
  • Rakhshandeh Nategh
Original Article


Influenza virus infections cause severe illness worldwide. Vaccination reduces the morbidity and mortality of influenza. The efficacy of vaccines varies due to antigenic differences between the circulating influenza strains and the vaccine. Neuraminidase inhibitors are effective for prophylaxis and treatment of influenza infections, and the emergence of drug resistant mutants is an important challenge. Full-length nucleotide and deduced amino acid sequences of the hemagglutinin and neuraminidase genes of three 2009 pandemic influenza A/H1N1 isolates were compared with the vaccine strain and some strains from different countries. Phylogenetic analysis for hemagglutinin and neuraminidase showed they were related to their vaccine strain, with an average of 99.56 and 99.53% sequence identity, respectively. No genetic indication of resistance to neuraminidase inhibitors was found. Although genomic analysis of hemagglutinin and neuraminidase genes of Iranian strains in comparison to the corresponding vaccine strain revealed some mutations, none of these were identified in functionally important receptor-binding sites.


  1. 1.
    Hidayatullah TA (2009) Cloning and expression of antigenic sites of Hemagglutinin of Influenza A virus. IJIB 6(3):137–142Google Scholar
  2. 2.
    Mpolya EA, Furuse Y, Nukiwa N, Suzuki A, Kamigaki T and Oshitani H (2009) Pandemic (H1N1) 2009 virus viewed from an epidemiological triangle model. JDR l.4(5):356–364Google Scholar
  3. 3.
    Richarda M, Del′eagea C, Barth′el′emya M, Linb YP, Hay A, Linaa B et al (2008) Impact of influenza A virus neuraminidase mutations on the stability, activity, and sensibility of the neuraminidase to neuraminidase inhibitors. J Clin Virol 41:20–24CrossRefGoogle Scholar
  4. 4.
    Moscona A (2005) Neuraminidase inhibitors for influenza. NEJM 353(13):1363–1373CrossRefPubMedGoogle Scholar
  5. 5.
    Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA et al (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses. AAC 52(9):3284–3292Google Scholar
  6. 6.
    Kilbourne AD (2006) Influenza pandemics of the 20th century. Emerg Infect Dis 12(1):9–14PubMedGoogle Scholar
  7. 7.
    Naffakh N, Werf S (2009) An outbreak of swine-origin influenza A(H1N1) virus with evidence for human-to-human transmission. Microb Infect. doi:10.1016/j.micinf
  8. 8.
    Donga H, Zhangb Y, Xionga H, Yana A, Dingc G, Chenag Y et al. (2009) Detection of human novel influenza A (H1N1) viruses using multi-fluorescent real-time RT-PCR. Virus Res 47:85–90Google Scholar
  9. 9.
    WHO (2009) Pandemic (H1N1) 2009 briefing note 17. Public health significance of virus mutation detected in Norway. 20 November.
  10. 10.
    WHO (2009) Pandemic (H1N1) 2009, update 75.
  11. 11.
    Deem MW, Pan K (2009) The epitope regions of H1-subtype influenza A, with application to vaccine efficacy. PEDS 22(9):543–546PubMedGoogle Scholar
  12. 12.
    Smith DJ, Lapedes AS, Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME et al (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376CrossRefPubMedGoogle Scholar
  13. 13.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. 14.
    Van de Peer Y, De Wachter R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Applic Biosci 13:227–230Google Scholar
  15. 15.
    Padlan EA (2009) The pandemic 2009 (H1N1) swine influenza virus is mild compared to the pandemic 1918 (H1N1) virus because of a proline-to-serine substitution in the receptor- binding site of its hemagglutinin: a hypothesis. Med Hypotheses 73(5):770–780. doi:10.1016/j.mehy.2009.09.034
  16. 16.
    Zambon MC (1999) Epidemiology and pathogenesis of influenza. JAC 44:3–9PubMedGoogle Scholar
  17. 17.
    Shen, J, Ma1, J, Wang, Q (2009) Evolutionary Trends of A(H1N1) Influenza Virus Hemagglutinin Since 1918. PLoS one. 4(11):e7789, 1–10 (
  18. 18.
    Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049CrossRefPubMedGoogle Scholar
  19. 19.
    Caton AJ, Brownlee GG, Yewdell JW (1982) The antigenic structure of the influenza virus A/PR/8/34 haemagglutinin (H1 subtype). Cell 31:417–427CrossRefPubMedGoogle Scholar
  20. 20.
    Racaniello V (2009) The D225G change in 2009 H1N1 influenza virus is not a concern. (24 November)
  21. 21.
    Tumpey T, Maines T, Van Hoeven N, Glaser L, Solorzano A, Pappas C et al (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315(5812):655–659CrossRefPubMedGoogle Scholar
  22. 22.
    Chutinimitkul S, Chieochansin T, Payungporn S, Samransamruajkit R, Hiranras T, Theamboonlers A et al (2007) Molecular characterization and phylogenetic analysis of H1N1 and H3N2 human influenza A viruses among infants and children in Thailand. Virus Res 132:122–131PubMedGoogle Scholar
  23. 23.
    Dharan NJ, Gubareva LV, Meyer J, Okomo-Adhiambo M, McClinton RC, Marshall SA et al (2009) Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. JAMA 301(10):1034–1041CrossRefPubMedGoogle Scholar
  24. 24.
    Antiviral use and the risk of drug resistance. Pandemic (H1N1) 2009. Weekly update 66.

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Nazanin Zahra Shafiei Jandaghi
    • 1
  • Talat Mokhtari Azad
    • 1
  • Maryam Naseri
    • 1
  • Jila Yavarian
    • 1
  • Rakhshandeh Nategh
    • 1
  1. 1.Tehran University of Medical SciencesTehranIran

Personalised recommendations