Archives of Virology

, Volume 155, Issue 4, pp 545–552 | Cite as

Isolation and characterization of a novel Staphylococcus aureus bacteriophage, ϕMR25, and its therapeutic potential

  • Hiroshi Hoshiba
  • Jumpei Uchiyama
  • Shin-ichiro Kato
  • Takako Ujihara
  • Asako Muraoka
  • Masanori Daibata
  • Hiroshi Wakiguchi
  • Shigenobu Matsuzaki
Original Article


A novel bacteriophage, ϕMR25, was isolated from a lysogenic Staphylococcus aureus strain by mitomycin C induction. Its biological features were analyzed in comparison with ϕMR11, which was described previously as a prototype therapeutic phage. ϕMR25 is morphologically similar to ϕMR11 (morphotype B1 of family Myoviridae) but has a broader host range than ϕMR11 on S. aureus strains. ϕMR25 can also multiply on S. aureus lysogens of ϕMR11. Its DNA is 44,342 bp in size, is predicted to include 70 open reading frames, and does not contain genes related to toxin or drug resistance. The lysogenic module and most of the putative virion protein genes are completely different from those of ϕMR11. In spite of their genetic diversity, intraperitoneal administration of ϕMR25 rescued mice inoculated with a lethal dose of S. aureus, as was the case for ϕMR11. These results suggest that ϕMR25 could be another candidate phage to treat S. aureus infection.


Phage Genome Major Capsid Protein Aureus Strain Phage Therapy Temperate Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partly supported by a grant from the Green Science Project, Kochi University.

Supplementary material

705_2010_623_MOESM1_ESM.xls (46 kb)
Supplementary material 1 (XLS 46 kb)
705_2010_623_MOESM2_ESM.ppt (879 kb)
Fig. S1. Distribution of ϕMR25-like phage (A) or ϕMR11-like phage (B) in S. aureus strains. SA and MR stand for methicillin-sensitive and methicillin-resistant strains, respectively. PCR reactions were carried out using primer pairs constructed based on each repressor protein gene, ϕMR25-orf5 or ϕMR11-orf4. ϕMR25 and ϕMR11 DNAs were used as templates for the positive control. M, size marker (ϕX174 HaeIII-digests, Takara Bio, Kyoto, Japan). “P +” and “–” under the gels indicate plaque formation and no plaque formation, respectively. The plaque formation data for ϕMR11 are from ref. 12. (PPT 879 kb)
705_2010_623_MOESM3_ESM.ppt (60 kb)
Fig. S2. Dot blot analysis of similarity between ϕMR25 and ϕMR11 DNAs. Parameters for the analysis are 17 and 0 for the window size and the mismatch limit, respectively. (PPT 60 kb)


  1. 1.
    Ackermann HW, Cantor ED, Jarvis AW, Lembke J, Mayo JA (1984) New species definitions in phages of gram-positive cocci. Intervirol 22:181–190CrossRefGoogle Scholar
  2. 2.
    Ackermann HW, DuBow MS (1987) Viruses of Prokaryotes. Vol II. Natural groups of bacteriophages. CRC Press, Boca Raton, FLGoogle Scholar
  3. 3.
    Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146:843–857CrossRefPubMedGoogle Scholar
  4. 4.
    Black LW, Showe MK, Steven AC (1994) Morphogenesis of the T4 head. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington DC, pp 218–258Google Scholar
  5. 5.
    Brüssow H (2006) Prophage genomics. In: Calendar R (ed) The bacteriphage, 2nd edn. Oxford University Press, NY, pp 17–25Google Scholar
  6. 6.
    Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage ϕPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67CrossRefPubMedGoogle Scholar
  7. 7.
    Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad USA 102:5174–5179CrossRefGoogle Scholar
  8. 8.
    Lee CY, Iandolo JJ (1988) Structural analysis of staphylococcal bacteriophage ϕ11 attachment sites. J Bacteriol 170:2409–2411PubMedGoogle Scholar
  9. 9.
    Lee JS, Stewart P (1985) The virion proteins and ultrastructure of Staphylococcus aureus. J Gen Virol 66:2017–2027CrossRefPubMedGoogle Scholar
  10. 10.
    Lowy FD (1998) Staphylococcal aureus infections. N Engl J Med 339:520–532CrossRefPubMedGoogle Scholar
  11. 11.
    Matsushita K, Uchiyama J, Kato S, Ujihara T, Hoshiba H, Sugihara S, Muraoka A, Wakiguchi H, Matsuzaki S (2009) Morphological and genetic analysis of three bacteriophages of Serratia marcescens isolated from environmental water. FEMS Microbiol Lett 291:201–208CrossRefPubMedGoogle Scholar
  12. 12.
    Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman Md, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage φMR11. J Infect Dis 187:613–624CrossRefPubMedGoogle Scholar
  13. 13.
    Merril CR, Scholl D, Adhya L (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497CrossRefPubMedGoogle Scholar
  14. 14.
    Narita S, Kaneko J, Chiba J, Piémont Y, Jarraud S, Etienne J, Kamio Y (2001) Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, ϕSLT. Gene 268:195–206CrossRefPubMedGoogle Scholar
  15. 15.
    Nishikawa H, Yasuda M, Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Ujihara T, Shimizu Y, Shuin T, Matsuzaki S (2008) T-even-related bacteriophages as candidates for treatment of Escherichia coli urinary tract infections. Arch Virol 153:507–515CrossRefPubMedGoogle Scholar
  16. 16.
    Pillai SK, Sakoulas G, Wennersten C, Eliopoulos GM, Moellering RC Jr, Ferraro MJ, Gold HS (2002) Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis 186:1603–1607CrossRefPubMedGoogle Scholar
  17. 17.
    Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, Yagyu K, Muraoka A, Sugai M, Hiramatsu K, Honke K, Matsuzaki S (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage φMR11. J Infect Dis 196:1237–1247CrossRefPubMedGoogle Scholar
  18. 18.
    Rashel M, Uchiyama J, Ujihara T, Takemura I, Hoshiba H, Matsuzaki S (2008) A novel site-specific recombination system derived from bacteriophage φMR11. Biochem Biophys Res Commun 368:192–198CrossRefPubMedGoogle Scholar
  19. 19.
    Rashel M, Uchiyama J, Takemura I, Hoshiba H, Ujihara T, Takatsuji H, Honke K, Matsuzaki S (2008) Tail-associated structural protein gp61 of Staphylococcus aureus phage φMR11 has bifunctional lytic activity. FEMS Microbiol Lett 284:9–16CrossRefPubMedGoogle Scholar
  20. 20.
    Smith MCM, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307CrossRefPubMedGoogle Scholar
  21. 21.
    Sugai M, Fujiwara T, Akiyama T, Ohara M, Komatsuzawa H, Inoue S, Suginaka H (1997) Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. J Bacteriol 179:1193–1202PubMedGoogle Scholar
  22. 22.
    Stewart PR, Waldron HG, Lee JS, Matthers PR (1985) Molecular relationships among serogroup B bacteriophages of Staphylococcus aureus. J Virol 55:111–116PubMedGoogle Scholar
  23. 23.
    Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Bacteriophages. Biology and applications, CRC Press, Boca Raton, FL, pp 381–436Google Scholar
  24. 24.
    Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490CrossRefPubMedGoogle Scholar
  25. 25.
    Tsiodras S, Gold HS, Sakoulas G et al (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208CrossRefPubMedGoogle Scholar
  26. 26.
    Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2008) Isolation and characterization of a novel Enterococcus faecalis phage φEF24C as therapeutic candidate. FEMS Microbiol Lett 278:200–206CrossRefPubMedGoogle Scholar
  27. 27.
    Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S (2008) In silico and in vivo evaluation of bacteriophage φEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163CrossRefPubMedGoogle Scholar
  28. 28.
    Vybiral D, Marian Takác, Loessner M, Witte A, Ahsen U, Blüsi U (2003) Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol Lett 219:275–283CrossRefPubMedGoogle Scholar
  29. 29.
    Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, Uchiyama J, Sakurai S, Matsuzaki S, Imai S, Yamaguchi K (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452CrossRefPubMedGoogle Scholar
  30. 30.
    Wilson P, Andrews JA, Charlesworth R, Walesby R, Singer M, Farrell DJ, Robbins M (2003) Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 51:186–188CrossRefPubMedGoogle Scholar
  31. 31.
    Ye ZH, Lee CY (1993) Cloning, sequencing, and genetic characterization of regulatory genes, rinA and rinB, required for the activation of staphylococcal phage φ11 int expression. J Bacteriol 175:1095–1102PubMedGoogle Scholar
  32. 32.
    Young R, Wang I (2006) Phage lysis. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 104–125Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hiroshi Hoshiba
    • 1
    • 2
  • Jumpei Uchiyama
    • 1
    • 2
  • Shin-ichiro Kato
    • 3
  • Takako Ujihara
    • 4
  • Asako Muraoka
    • 5
  • Masanori Daibata
    • 2
  • Hiroshi Wakiguchi
    • 1
  • Shigenobu Matsuzaki
    • 2
  1. 1.Department of PediatricsKochi Medical SchoolNankokuJapan
  2. 2.Department of Microbiology and InfectionKochi Medical SchoolNankokuJapan
  3. 3.Research Institute of Molecular GeneticsKochi UniversityNankokuJapan
  4. 4.Section of Life Science and Biofunctional Materials, Science Research CenterKochi UniversityNankokuJapan
  5. 5.Kochi Junior CollegeKochiJapan

Personalised recommendations