Archives of Virology

, Volume 154, Issue 8, pp 1365–1369 | Cite as

Molecular analysis of the VP7 gene of pheasant rotaviruses identifies a new genotype, designated G23

  • Krisztina Ursu
  • Péter Kisfali
  • Dóra Rigó
  • Éva Ivanics
  • Károly Erdélyi
  • Ádám Dán
  • Béla Melegh
  • Vito Martella
  • Krisztián Bányai
Brief Report

Abstract

Rotavirus-associated enteritis has been reported in pheasants, but there is no information on the genetic/antigenic features of pheasant rotaviruses. In this study, we sequenced the VP7-encoding genome segment of three pheasant rotavirus strains detected during 2008 in Hungary. The full-length genome segment was 1,070 bp long, while the open reading frame was predicted to encode a 330-aa-long protein. The nucleotide sequence identities among the three pheasant rotavirus strains were high (≥94%), whereas the range of nucleotide sequence identities to other avian and mammalian rotavirus VP7 genes fell between 68 and 73% and between 60 and 66%, respectively. Our findings indicate that these Hungarian pheasant rotaviruses need to be considered representatives of a new VP7 genotype specificity, designated G23.

References

  1. 1.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. 2.
    Brüssow H, Nakagomi O, Minamoto N, Eichhorn W (1992) Rotavirus 993/83, isolated from calf faeces, closely resembles an avian rotavirus. J Gen Virol 73:1873–1875PubMedCrossRefGoogle Scholar
  3. 3.
    Desselberger U, McCrae MA (1994) The rotavirus genome. Curr Top Microbiol Immunol 185:31–66PubMedGoogle Scholar
  4. 4.
    Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1917–1974Google Scholar
  5. 5.
    Gough RE, Wood GW, Collins MS, Spackman D, Kemp J, Gibson LA (1985) Rotavirus infection in pheasant poults. Vet Rec 116:295PubMedGoogle Scholar
  6. 6.
    Green KY, Sears JF, Taniguchi K, Midthun K, Hoshino Y, Gorziglia M, Nishikawa K, Urasawa S, Kapikian AZ, Chanock RM, Flores J (1988) Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene. J Virol 62:1819–1823PubMedGoogle Scholar
  7. 7.
    Kapikian AZ, Hoshino Y, Chanock RM (2001) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strais SE (eds) Fields virology, 4th edn. Lipincott William and Wilkins, Philadelphia, pp 1787–1833Google Scholar
  8. 8.
    Kool DA, Holmes IH (1993) The avian rotavirus Ty-1 Vp7 nucleotide and deduced amino acid sequences differ significantly from those of Ch-2 rotavirus. Arch Virol 129:227–234PubMedCrossRefGoogle Scholar
  9. 9.
    Legrottaglie R, Rizzi V, Agrimi P (1997) Isolation and identification of avian rotavirus from pheasant chicks with signs of clinical enteritis. Comp Immunol Microbiol Infect Dis 20:205–210PubMedCrossRefGoogle Scholar
  10. 10.
    Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gómara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219PubMedCrossRefGoogle Scholar
  11. 11.
    Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K, Estes MK, Gentsch JR, Iturriza-Gómara M, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Patton JT, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621–1629PubMedCrossRefGoogle Scholar
  12. 12.
    McNulty MS (1990) Rotavirus infections. In: Calnek BW, Barnes HJ, Beard CW, Reid WM, Yoder MW (eds) Diseases of poultry, 9th edn. Iowa State University Press, Ames, pp 628–635Google Scholar
  13. 13.
    Minamoto N, Oki K, Tomita M, Kinjo T, Suzuki Y (1988) Isolation and characterization of rotavirus from feral pigeon in mammalian cell cultures. Epidemiol Infect 100:481–492PubMedCrossRefGoogle Scholar
  14. 14.
    Nishikawa K, Hoshino Y, Gorziglia M (1991) Sequence of the VP7 gene of chicken rotavirus Ch2 strain of serotype 7 rotavirus. Virology 185:853–856PubMedCrossRefGoogle Scholar
  15. 15.
    Reynolds DL, Theil KW, Saif YM (1987) Demonstration of rotavirus and rotavirus-like virus in the intestinal contents of diarrheic pheasant chicks. Avian Dis 31:376–379PubMedCrossRefGoogle Scholar
  16. 16.
    Schumann T, Hotzel H, Otto P, Johne R (2009) Evidence of interspecies transmission and reassortment among avian group A rotaviruses. Virology 386:334–343PubMedCrossRefGoogle Scholar
  17. 17.
    Yason CV, Schat KA (1985) Isolation and characterization of avian rotaviruses. Avian Dis 1985(29):499–508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Krisztina Ursu
    • 1
  • Péter Kisfali
    • 2
  • Dóra Rigó
    • 1
  • Éva Ivanics
    • 1
  • Károly Erdélyi
    • 1
  • Ádám Dán
    • 1
  • Béla Melegh
    • 2
  • Vito Martella
    • 3
  • Krisztián Bányai
    • 4
    • 5
  1. 1.Veterinary Diagnostic Directorate, Central Agricultural OfficeBudapestHungary
  2. 2.Department of Medical Genetics and Child DevelopmentUniversity of PécsPécsHungary
  3. 3.Department of Animal Health and Well-beingUniversity of BariBariItaly
  4. 4.Veterinary Medical Research InstituteHungarian Academy of SciencesBudapestHungary
  5. 5.Department of Medical Microbiology and ImmunologyUniversity of PécsPécsHungary

Personalised recommendations