Archives of Virology

, Volume 154, Issue 6, pp 909–918 | Cite as

Hytrosaviridae: a proposal for classification and nomenclature of a new insect virus family

  • Adly M. M. Abd-Alla
  • J. M. Vlak
  • M. Bergoin
  • J. E. Maruniak
  • A. Parker
  • J. P. Burand
  • J. A. Jehle
  • D. G. Boucias
  • Hytrosavirus Study Group of the ICTV
Brief Review


Salivary gland hypertrophy viruses (SGHVs) have been identified from different dipteran species, such as the tsetse fly Glossina pallidipes (GpSGHV), the housefly Musca domestica (MdSGHV) and the narcissus bulbfly Merodon equestris (MeSGHV). These viruses share the following characteristics: (i) they produce non-occluded, enveloped, rod-shaped virions that measure 500–1,000 nm in length and 50–100 nm in diameter; (ii) they possess a large circular double-stranded DNA (dsDNA) genome ranging in size from 120 to 190 kbp and having G + C ratios ranging from 28 to 44%; (iii) they cause overt salivary gland hypertrophy (SGH) symptoms in dipteran adults and partial to complete sterility. The available information on the complete genome sequence of GpSGHV and MdSGHV indicates significant co-linearity between the two viral genomes, whereas no co-linearity was observed with baculoviruses, ascoviruses, entomopoxviruses, iridoviruses and nudiviruses, other large invertebrate DNA viruses. The DNA polymerases encoded by the SGHVs are of the type B and closely related, but they are phylogenetically distant from DNA polymerases encoded by other large dsDNA viruses. The great majority of SGHV ORFs could not be assigned by sequence comparison. Phylogenetic analysis of conserved genes clustered both SGHVs, but distantly from the nudiviruses and baculoviruses. On the basis of the available morphological, (patho)biological, genomic and phylogenetic data, we propose that the two viruses are members of a new virus family named Hytrosaviridae. This proposed family currently comprises two unassigned species, G. pallidipes salivary gland hypertrophy virus and M. domestica salivary gland hypertrophy virus, and a tentative unassigned species, M. equestris salivary gland hypertrophy virus. Here, we present the characteristics and the justification for establishing this new virus family.


Virus Family dsDNA Virus Aminoacylase Housefly Musca Domestica Haematobia Irritans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Monique M. van Oers from the Laboratory of Virology, Wageningen University, The Netherlands, for helping in preparation of the gene parity plot figure.


  1. 1.
    Abd-Alla A, Bossin H, Cousserans F, Parker A, Bergoin M, Robinson A (2007) Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139:143–149PubMedCrossRefGoogle Scholar
  2. 2.
    Abd-Alla AMM, Cousserans F, Parker AG, Jehle JA, Parker NJ, Vlak JM, Robinson AS, Bergoin M (2008) Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) reveals a novel large double-stranded circular DNA virus. J Virol 82:4595–4611PubMedCrossRefGoogle Scholar
  3. 3.
    Amargier A, Lyon JP, Vago C, Meynadier G, Veyrunes JC (1979) Discovery and purification of a virus in gland hyperplasia of insects. Study of Merodon equestris F. (Diptera, Syrphidae). C R Acad Sci D 289:481–484Google Scholar
  4. 4.
    Burtt E (1945) Hypertrophied salivary glands in Glossina: evidence that G. pallidipes with this abnormality is particularly suited to trypanosome infection. Ann Trop Med Parasitol 39:11–13Google Scholar
  5. 5.
    Coler RR, Boucias DG, Frank JH, Maruniak JE, Garcia-Canedo A, Pendland JC (1993) Characterization and description of a virus causing salivary gland hyperplasia in the housefly, Musca domestica. Med Vet Entomol 7:275–282PubMedCrossRefGoogle Scholar
  6. 6.
    Ellis DS, Maudlin I (1987) Salivary gland hyperplasia in wild caught tsetse from Zimbabwe. Entomol Exp Appl 45:167–173CrossRefGoogle Scholar
  7. 7.
    Feldmann U (1994) Guidelines for the rearing of tsetse flies using the membrane feeding technique. In: Ochieng’-Odero JPR (ed) Techniques of insect rearing for the development of integrated pest and vector management strategies. ICIPE Science Press, Nairobi, pp 449–471Google Scholar
  8. 8.
    Garcia-Maruniak A, Abd-Alla AMM, Salem TZ, Parker AG, van Oers MM, Maruniak JE, Kim W, Burand JP, Cousserans F, Robinson AS, Vlak JM, Bergoin M, Boucias DG (2009) Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade. J Gen Virol 90:334–346PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia-Maruniak A, Maruniak JE, Farmerie W, Boucias DG (2008) Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica, MdSGHV. Virology 377:184–196PubMedCrossRefGoogle Scholar
  10. 10.
    Geden CJ, Lietze VU, Boucias DG (2008) Seasonal prevalence and transmission of salivary gland hypertrophy virus of house flies (Diptera: Muscidae). J Med Entomol 45:42–51PubMedCrossRefGoogle Scholar
  11. 11.
    Gouteux JP (1987) Prevalence of enlarged salivary glands in Glossina palpalis, G. pallicera, and G. nigrofusca (Diptera: Glossinidae) from the Vavoua area, Ivory Coast. J Med Entomol 24:268PubMedGoogle Scholar
  12. 12.
    Hu ZH, Arif BM, Jin F, Martens JW, Chen XW, Sun JS, Zuidema D, Goldbach RW, Vlak JM (1998) Distinct gene arrangement in the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 79(Pt 11):2841–2851PubMedGoogle Scholar
  13. 13.
    Jaenson TGT (1978) Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes. Trans R Soc Trop Med Hyg 72:234–238PubMedCrossRefGoogle Scholar
  14. 14.
    Jaenson TGT (1986) Sex ratio distortion and reduced lifespan of Glossina pallidipes infected with the virus causing salivary gland hyperplasia. Entomol Exp Appl 41:256–271CrossRefGoogle Scholar
  15. 15.
    Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266PubMedCrossRefGoogle Scholar
  16. 16.
    Jura WGZO, Odhiambo TR, Otieno LH, Tabu NO (1988) Gonadal lesions in virus-infected male and female tsetse, Glossina pallidipes (Diptera: Glossinidae). J Invertebr Pathol 52:1–8PubMedCrossRefGoogle Scholar
  17. 17.
    Jura WGZO, Otieno LH, Chimtawi MMB (1989) Ultrastructural evidence for trans-ovum transmission of the DNA virus of tsetse, Glossina pallidipes (Diptera: Glossinidae). Curr Microbiol 18:1–4CrossRefGoogle Scholar
  18. 18.
    Kokwaro ED, Nyindo M, Chimtawi M (1990) Ultrastructural changes in salivary glands of tsetse, Glossina morsitans morsitans, infected with virus and rickettsia-like organisms. J Invertebr Pathol 56:337–346PubMedCrossRefGoogle Scholar
  19. 19.
    Lietze VU, Geden CJ, Blackburn P, Boucias DG (2007) Effects of salivary gland hypertrophy virus on the reproductive behavior of the housefly, Musca domestica. Appl Environ Microbiol 73:6811–6818PubMedCrossRefGoogle Scholar
  20. 20.
    Marks H, Ren XY, Sandbrink H, van Hulten MCW, Vlak JM (2006) In silico identification of putative promoter motifs of white spot syndrome virus. BMC Bioinformatics 7:309PubMedCrossRefGoogle Scholar
  21. 21.
    Mellor PS (2000) Replication of arboviruses in insect vectors. J Comp Pathol 123:231–247PubMedCrossRefGoogle Scholar
  22. 22.
    Minter-Goedbloed E, Minter DM (1989) Salivary gland hyperplasia and trypanosome infection of Glossina in two areas of Kenya. Trans R Soc Trop Med Hyg 83:640–641PubMedCrossRefGoogle Scholar
  23. 23.
    Odindo MO (1982) Incidence of salivary gland hypertrophy in field populations of the tsetse Glossina pallidipes on the South Kenya coast. Insect Sci Appl 3:59–64Google Scholar
  24. 24.
    Odindo MO, Sabwa DM, Amutalla PA, Otieno WA (1981) Preliminary tests on the transmission of virus-like particles to the tsetse Glossina pallidipes. Insect Sci Appl 2:219–221Google Scholar
  25. 25.
    Otieno LH, Kokwaro ED, Chimtawi M, Onyango P (1980) Prevalence of enlarged salivary glands in wild populations of Glossina pallidipes in Kenya, with a note on the ultrastructure of the affected organ. J Invertebr Pathol 36:113–118CrossRefGoogle Scholar
  26. 26.
    Sang RC, Jura WGZO, Otieno LH, Mwangi RW (1998) The effects of a DNA virus infection on the reproductive potential of female tsetse flies, Glossina morsitans centralis and Glossina morsitans morsitans (Diptera: Glossinidae). Mem Inst Oswaldo Cruz 93:861–864PubMedCrossRefGoogle Scholar
  27. 27.
    Sang RC, Jura WGZO, Otieno LH, Mwangi RW, Ogaja P (1999) The effects of a tsetse DNA virus infection on the functions of the male accessory reproductive gland in the host fly Glossina morsitans centralis (Diptera; Glossinidae). Curr Microbiol 38:349–354PubMedCrossRefGoogle Scholar
  28. 28.
    Sang RC, Jura WGZO, Otieno LH, Ogaja P (1996) Ultrastructural changes in the milk gland of tsetse Glossina morsitans centralis (Diptera; Glissinidae) female infected by a DNA virus. J Invertebr Pathol 68:253–259PubMedCrossRefGoogle Scholar
  29. 29.
    Shaw MK, Moloo SK (1993) Virus-like particles in Rickettsia within the midgut epithelial cells of Glossina morsitans centralis and Glossina brevipalpis. J Invertebr Pathol 61:162–166CrossRefGoogle Scholar
  30. 30.
    Wang Y, Burand JP, Jehle JA (2007) Nudivirus genomics: diversity and classification. Virol Sin 22:128–136CrossRefGoogle Scholar
  31. 31.
    Whitnall ABM (1934) The trypanosome infections of Glossina pallidipes in the Umfolosi Game Reserve, Zululand. Onderstepoort J Vet Sci Anim Ind 2:7–21Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Adly M. M. Abd-Alla
    • 1
  • J. M. Vlak
    • 2
  • M. Bergoin
    • 3
  • J. E. Maruniak
    • 4
  • A. Parker
    • 1
  • J. P. Burand
    • 5
  • J. A. Jehle
    • 6
  • D. G. Boucias
    • 4
  • Hytrosavirus Study Group of the ICTV
  1. 1.Entomology Unit, FAO/IAEA Agriculture and Biotechnology LaboratoryIAEA Laboratories SeibersdorfSeibersdorfAustria
  2. 2.Laboratory of VirologyWageningen UniversityWageningenThe Netherlands
  3. 3.Laboratoire de Pathologie ComparéeUniversité Montpellier 2MontpellierFrance
  4. 4.Department of Entomology and NematologyUniversity of FloridaGainesvilleUSA
  5. 5.Department of Plant, Soil and Insect ScienceUniversity of MassachusettsAmherstUSA
  6. 6.Agricultural Service Center Palatinate (DLR Rheinpfalz)WeinstrasseGermany

Personalised recommendations