Advertisement

Archives of Virology

, Volume 154, Issue 1, pp 115–119 | Cite as

Testing thermal resistance of viruses

  • Andreas SauerbreiEmail author
  • P. Wutzler
Brief Report

Abstract

Representative viral strains recommended for virucidal testing of biocides in human medicine were used for testing viral resistance to dry heat using the new Keredusy hot instrument. The results demonstrate that poliovirus type 1 could be inactivated by treatment at 75°C for 1 h. For inactivation of adenovirus type 5, 2 h at 85°C was needed. The infectivity of polyomavirus SV40 could only be influenced significantly by a temperature of 95°C over a period of 1 h, whereas vaccinia virus and bovine viral diarrhea virus needed a time interval of 2 h at 95°C. The infectivity of bovine parvovirus could not be influenced significantly by exposure to 95°C for 2 h. In conclusion, human viruses and their surrogates for testing biocides may have a considerable thermal resistance that makes them difficult to be inactivated only by dry heat.

Keywords

Thermal Resistance Biocide Bovine Viral Diarrhea Virus Adenovirus Type Viral Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Medizin&Service GmbH (Chemnitz, Germany) supported this work by providing the Keredusy hot instrument.

References

  1. 1.
    Anonymous (2005) Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten e.V. und des Robert Koch-Instituts zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin, Fassung vom 15. Juni 2005. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:1420–1426Google Scholar
  2. 2.
    Blümel J, Schmidt I, Willkommen H, Löwer J (2002) Inactivation of parvovirus B19 during pasteurization of human serum albumin. Transfusion 42:1011–1018PubMedCrossRefGoogle Scholar
  3. 3.
    Bräuninger S, Fischer I, Peters J (1994) The temperature stability of bovine parvovirus. Zentralbl Hyg Umweltmed 196:270–278Google Scholar
  4. 4.
    Bräuninger S, Peters S, Borchers U, Kao M (2000) Further studies on thermal resistance of bovine parvovirus against most and dry heat. Int J Hyg Environ Health 203:71–75CrossRefGoogle Scholar
  5. 5.
    Croci L, Ciccozzi M, De Medici D, Di Pasquale S, Fiore A, Mele A, Toti L (1999) Inactivation of hepatitis A virus in heat-treated mussels. J Appl Microbiol 87:884–888PubMedCrossRefGoogle Scholar
  6. 6.
    Gantzer C, Levi Y, Schwartzbrod L (1996) Effect of heat on the survival of infectious coxsackievirus B3 and its genome in water. Zentralbl Hyg Umweltmed 199:76–83PubMedGoogle Scholar
  7. 7.
    Kamolsiripichaiporn S, Subharat S, Udon R, Thongtha P, Nuanualsuwan S (2007) Thermal inactivation of foot-and-mouth disease viruses in suspension. Appl Environ Microbiol 73:7177–7184PubMedCrossRefGoogle Scholar
  8. 8.
    Mani B, Gerber M, Lieby P, Bosschetti N, Kempf C, Ros C (2007) Molecular mechanism underlying B19 virus inactivation and comparison to other parvovirus. Transfusion 47:1765–1774PubMedCrossRefGoogle Scholar
  9. 9.
    Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML (2007) Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 361:412–425PubMedCrossRefGoogle Scholar
  10. 10.
    Ng PK, Dobkin MB (1985) Pasteurization of antihemophilic factor and model virus inactivation studies. Thrombosis Res 39:439–447CrossRefGoogle Scholar
  11. 11.
    Prikod`ko GG, Vasilyeva I, Reyes H, Wong S, Brown KE, Jameson T, Busby TF (2005) Evaluation of a new LightCycler reverse transcription-polymerase chain reaction infectivity assay for detection of human parvovirus B19 in dry-heat inactivation studies. Transfusion 45:1011–1019CrossRefGoogle Scholar
  12. 12.
    Roberts PL, Hart H (2000) Comparison of the inactivation of canine and bovine parvovirus by freeze–drying and dry-heat treatment in two high purity factor VIII concentrates. Biologicals 28:185–188PubMedCrossRefGoogle Scholar
  13. 13.
    Sattar SA (2004) Microbicides and the environmental control of nosocomial infections. J Hosp Infect 56(Suppl 2):S64–S69PubMedCrossRefGoogle Scholar
  14. 14.
    Sattar SA, Adegbunrin O, Ramirez J (2002) Combined application of simulated reuse and quantitative carrier test to assess high-level disinfection: experiments with an accelerated hydrogen peroxide-based formulation. Am J Infect Control 30:449–457PubMedCrossRefGoogle Scholar
  15. 15.
    Shiomi H, Urasawa T, Urasawa S, Kobayashi N, Abe S, Taniguchi K (2004) Isolation and characterisation of poliovirus mutants resistant to heating at 50 degrees Celsius for 30 min. J Med Virol 74:484–491PubMedCrossRefGoogle Scholar
  16. 16.
    von Rheinbnaben F, Wolff MH (2002) Handbuch der viruswirksamen Desinfektion. Springer, BerlinGoogle Scholar
  17. 17.
    Wright SA, Bieluch VM (1993) Selected nosocomial viral infections. Heart Lung 22:183–187PubMedGoogle Scholar
  18. 18.
    Wutzler P, Sauerbrei A (2004) Virucidal activity of the new disinfectant monopercitric acid. Lett Appl Microbiol 39:194–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Virology and Antiviral TherapyFriedrich-Schiller University of JenaJenaGermany

Personalised recommendations