Archives of Virology

, 153:2273 | Cite as

An extensive analysis on the global codon usage pattern of baculoviruses

Original Article

Abstract

Baculovirus-insect cell systems have been widely used over the past decades. However, few studies to date have addressed baculovirus codon usage. In this study, we calculated the effective number of codons (ENC) for all 5,842 ORFs from 42 completely sequenced baculoviruses. The results revealed that most of the baculoviruses lacked strong codon bias (ENC > 35). Exceptions were Lymantria dispar nucleopolyhedrovirus (LdMNPV) and Orgyia pseudotsugata nucleopolyhedrovirus (OpMNPV), which were found to have a strong codon bias (ENC < 35) in 20.9 and 11.8%, respectively, of their total genes. Comparisons of preferred codons based on taxonomic clades showed that the preferred codons were different in different clades, but nine codons (UUU, UAC, UUG, CAC, CAA, AAA, GUG, GAA, and AUU) were preferably adopted by most baculovirus genes. Correspondence analysis showed that the major trend in codon usage variation among all genes significantly correlated with the GC content of sequences. Analyses also suggested that the high condon bias of LdMNPV and OpMNPV were correlated with their high GC%.

References

  1. 1.
    Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353PubMedCrossRefGoogle Scholar
  2. 2.
    Moriyama EN, Hartl DL (1993) Codon usage bias and base composition of nuclear genes in Drosophila. Genetics 134:847–858PubMedGoogle Scholar
  3. 3.
    Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128PubMedCrossRefGoogle Scholar
  4. 4.
    Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol 616:46–53PubMedCrossRefGoogle Scholar
  5. 5.
    Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 25:7055–7074CrossRefGoogle Scholar
  6. 6.
    Shields DC (1990) Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol 31:71–80PubMedCrossRefGoogle Scholar
  7. 7.
    Sharp PM, Matassi G (1994) Codon usage and genome evolution. Curr Opin Genet Dev 4:851–860PubMedCrossRefGoogle Scholar
  8. 8.
    Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523PubMedCrossRefGoogle Scholar
  9. 9.
    Wright F, Bibb MJ (1992) Codon usage in the G + C rich Streptomyces genome. Gene 113:55–65PubMedCrossRefGoogle Scholar
  10. 10.
    Fennoy SL, Bailey-Serres J (1993) Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons. Nucleic Acids Res 21:5294–5300PubMedCrossRefGoogle Scholar
  11. 11.
    Chiapello H, Lisacek F, Caboche M, Hénaut A (1998) Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209:GC1–GC38PubMedCrossRefGoogle Scholar
  12. 12.
    Jiang RH, Govers F (2006) Nonneutral GC3 and retroelement codon mimicry in phytophthora. J Mol Evol 63:458–472PubMedCrossRefGoogle Scholar
  13. 13.
    Mitreva M, Wendl MC, Martin J, Wylie T, Yin Y, Larson A, Parkinson J, Waterston RH, McCarter JP (2006) Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species. Genome Biol 8:R75CrossRefGoogle Scholar
  14. 14.
    Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62:551–563PubMedCrossRefGoogle Scholar
  15. 15.
    Adams MJ, Antoniw JE (2003) Codon usage bias amongst plant viruses. Arch Virol 149:113–135PubMedCrossRefGoogle Scholar
  16. 16.
    Sewatanon J, Srichatrapimuk S, Auewarakul P (2007) Compositional bias and size of genomes of human DNA viruses. Intervirology 50:123–132PubMedCrossRefGoogle Scholar
  17. 17.
    Auewarakul P (2005) Composition bias and genome polarity of RNA viruses. Virus Res 109:33–37PubMedCrossRefGoogle Scholar
  18. 18.
    Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, Theilmann DA, Thiem SM, Vlak JM (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151:1257–1266PubMedCrossRefGoogle Scholar
  19. 19.
    Herniou EA, Olszewski JA, Cory JS, O’Reilly DR (2003) The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48:211–234PubMedCrossRefGoogle Scholar
  20. 20.
    Herniou EA, Jehle JA (2007) Baculovirus phylogeny and evolution. Curr Drug Targets 8:1043–1050PubMedCrossRefGoogle Scholar
  21. 21.
    Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 12:2156–2165Google Scholar
  22. 22.
    Possee RD (1997) Baculoviruses as expression vectors. Curr Opin Biotechnol 8:569–572PubMedCrossRefGoogle Scholar
  23. 23.
    Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575PubMedCrossRefGoogle Scholar
  24. 24.
    Condreay JP, Kost TA (2007) Baculovirus expression vectors for insect and mammalian cells. Curr Drug Targets 8:1126–1131PubMedCrossRefGoogle Scholar
  25. 25.
    Sakudo A, Nakamura I, Tsuji S, Ikuta K (2008) GPI-anchorless human prion protein is secreted and glycosylated but lacks superoxide dismutase activity. Int J Mol Med 21:217–222PubMedGoogle Scholar
  26. 26.
    Harrison RL, Bonning BC (2003) Comparative analysis of the genomes of Rachiplusia ou and Autographa californica multiple nucleopolyhedroviruses. J Gen Virol 84:1827–1842PubMedCrossRefGoogle Scholar
  27. 27.
    Ranjan A, Hasnain SE (1995) Codon usage in the prototype baculoviurs—Autographa californica nuclear polyhedrosis virus. Indian J Biochem Biophys 32:424–428PubMedGoogle Scholar
  28. 28.
    Levin DB, Whittome B (2000) Codon usage in nucleopolyhedroviruses. J Gen Virol 81:2313–2325PubMedGoogle Scholar
  29. 29.
    Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605PubMedCrossRefGoogle Scholar
  30. 30.
    Nie ZM, Zhang ZF, Wang D, He PA, Jiang CY, Song L, Chen F, Xu J, Yang L, Yu LL, Chen J, Lv ZB, Lu JJ, Wu XF, Zhang YZ (2007) Complete sequence and organization of Antheraea pernyi nucleopolyhedrovirus, a dr-rich baculovirus. BMC Genomic 24(8):248CrossRefGoogle Scholar
  31. 31.
    Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80:1323–1337PubMedGoogle Scholar
  32. 32.
    Lauzon HA, Jamieson PB, Krell PJ, Arif BM (2005) Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome. J Gen Virol 86:945–961PubMedCrossRefGoogle Scholar
  33. 33.
    De Jong JG, Lauzon HA, Dominy C, Poloumienko A, Carstens EB, Arif BM, Krell PJ (2005) Analysis of the Choristoneura fumiferana nucleopolyhedrovirus genome. J Gen Virol 86:929–943PubMedCrossRefGoogle Scholar
  34. 34.
    Hyink O, Dellow RA, Olsen MJ, Caradoc-Davies KM, Drake K, Herniou EA, Cory JS, O’Reilly DR, Ward VK (2002) Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. J Gen Virol 83:957–971PubMedGoogle Scholar
  35. 35.
    Chen YR, Wu CY, Lee ST, Wu YJ, Lo CF, Tsai MF, Wang CH (2008) Genomic and host range studies of Maruca vitrata nucleopolyhedrovirus. J Gen Virol 89:2315–2330PubMedCrossRefGoogle Scholar
  36. 36.
    Ahrens CH, Russell RL, Funk CJ, Evans JT, Harwood SH, Rohrmann GF (1997) The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 229:381–399PubMedCrossRefGoogle Scholar
  37. 37.
    Nakai M, Goto C, Kang W, Shikata M, Luque T, Kunimi Y (2003) Genome sequence and organization of a nucleopolyhedrovirus isolated from the smaller tea tortrix, Adoxophyes honmai. Virology 316:171–183PubMedCrossRefGoogle Scholar
  38. 38.
    Jakubowska AK, Peters SA, Ziemnicka J, Vlak JM, van Oers MM (2006) Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV. J Gen Virol 87:537–551PubMedCrossRefGoogle Scholar
  39. 39.
    van Oers MM, Abma-Henkens MH, Herniou EA, de Groot JC, Peters S, Vlak JM (2005) Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. J Gen Virol 86:2069–2080PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang CX, Ma XC, Guo ZJ (2005) Comparison of the complete genome sequence between C1 and G4 isolates of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virology 333:190–199PubMedCrossRefGoogle Scholar
  41. 41.
    Chen X, IJkel WF, Tarchini R, Sun X, Sandbrink H, Wang H, Peters S, Zuidema D, Lankhorst RK, Vlak JM, Hu Z (2001) The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome. J Gen Virol 82:241–257PubMedGoogle Scholar
  42. 42.
    Chen X, Zhang WJ, Wong J, Chun G, Lu A, McCutchen BF, Presnail JK, Herrmann R, Dolan M, Tingey S, Hu ZH, Vlak JM (2002) Comparative analysis of the complete genome sequences of Helicoverpa zea and Helicoverpa armigera single-nucleocapsid nucleopolyhedroviruses. J Gen Virol 83:673–684PubMedGoogle Scholar
  43. 43.
    Kuzio J, Pearson MN, Harwood SH, Funk CJ, Evans JT, Slavicek JM, Rohrmann GF (1999) Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 253:17–34PubMedCrossRefGoogle Scholar
  44. 44.
    Li Q, Donly C, Li L, Willis LG, Theilmann DA, Erlandson M (2002) Sequence and organization of the Mamestra configurata nucleopolyhedrovirus genome. Virology 294:106–121PubMedCrossRefGoogle Scholar
  45. 45.
    Li L, Donly C, Li Q, Willis LG, Keddie BA, Erlandson MA, Theilmann DA (2002) Identification and genomic analysis of a second species of nucleopolyhedrovirus isolated from Mamestra configurata. Virology 297:226–244PubMedCrossRefGoogle Scholar
  46. 46.
    IJkel WF, van Strien EA, Heldens JG, Broer R, Zuidema D, Goldbach RW, Vlak JM (1999) Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol 80:3289–3304PubMedGoogle Scholar
  47. 47.
    Wolff JL, Valicente FH, Martins R, Oliveira JV, Zanotto PM (2008) Analysis of the genome of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV-19) and of the high genomic heterogeneity in group II nucleopolyhedroviruses. J Gen Virol 89:1202–1211PubMedCrossRefGoogle Scholar
  48. 48.
    Pang Y, Yu J, Wang L, Hu X, Bao W, Li G, Chen C, Han H, Hu S, Yang H (2001) Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287:391–404PubMedCrossRefGoogle Scholar
  49. 49.
    Willis LG, Seipp R, Stewart TM, Erlandson MA, Theilmann DA (2005) Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene. Virology 338:209–226PubMedCrossRefGoogle Scholar
  50. 50.
    Wormleaton S, Kuzio J, Winstanley D (2003) The complete sequence of the Adoxophyes orana granulovirus genome. Virology 311:350–365PubMedCrossRefGoogle Scholar
  51. 51.
    Escasa SR, Lauzon HA, Mathur AC, Krell PJ, Arif BM (2006) Sequence analysis of the Choristoneura occidentalis granulovirus genome. J Gen Virol 87:1917–1933PubMedCrossRefGoogle Scholar
  52. 52.
    Luque T, Finch R, Crook N, O’Reilly DR, Winstanley D (2001) The complete sequence of the Cydia pomonella granulovirus genome. J Gen Virol 82:2531–2547PubMedGoogle Scholar
  53. 53.
    Lange M, Jehle JA (2003) The genome of the Cryptophlebia leucotreta granulovirus. Virology 317:220–236PubMedCrossRefGoogle Scholar
  54. 54.
    Hashimoto Y, Hayakawa T, Ueno Y, Fujita T, Sano Y, Matsumoto T (2000) Sequence analysis of the Plutella xylostella granulovirus genome. Virology 275:358–372PubMedCrossRefGoogle Scholar
  55. 55.
    Hayakawa T, Ko R, Okano K, Seong SI, Goto C, Maeda S (1999) Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 262:277–297PubMedCrossRefGoogle Scholar
  56. 56.
    Lauzon HA, Lucarotti CJ, Krell PJ, Feng Q, Retnakaran A, Arif BM (2004) Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol 78:7023–7035PubMedCrossRefGoogle Scholar
  57. 57.
    Garcia-Maruniak A, Maruniak JE, Zanotto PM, Doumbouya AE, Liu JC, Merritt TM, Lanoie JS (2004) Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. J Virol 78:7036–7051PubMedCrossRefGoogle Scholar
  58. 58.
    Duffy SP, Young AM, Morin B, Lucarotti CJ, Koop BF, Levin DB (2006) Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome. J Virol 80:6952–6963PubMedCrossRefGoogle Scholar
  59. 59.
    Afonso CL, Tulman ER, Lu Z, Balinsky CA, Moser BA, Becnel JJ, Rock DL, Kutish GF (2001) Genome sequence of a baculovirus pathogenic for Culex nigripalpus. J Virol 22:11157–11165CrossRefGoogle Scholar
  60. 60.
    Wright F (1990) The effective number of codons’ used in a gene. Gene 87:23–29PubMedCrossRefGoogle Scholar
  61. 61.
    Lloyd AT, Sharp PM (1992) Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res 20:5289–5295PubMedCrossRefGoogle Scholar
  62. 62.
    Vicario S, Moriyama EN, Powell JR (2007) Codon usage in twelve species of Drosophila. BMC Evol Biol 7:226PubMedCrossRefGoogle Scholar
  63. 63.
    Romero H, Zavala A, Musto H (2000) Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28:2084–2090PubMedCrossRefGoogle Scholar
  64. 64.
    Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14:7737–7749PubMedCrossRefGoogle Scholar
  65. 65.
    Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, LondonGoogle Scholar
  66. 66.
    Sharp PM, Lloyd AT (1993) Codon usage. In: Maroni G (ed) An atlas of Drosophila genes. Oxford University Press, New YorkGoogle Scholar
  67. 67.
    Perrière G, Thioulouse J (2002) Use and misuse of correspondence analysis in codon usage studies. Nucleic Acids Res 30:4548–4555PubMedCrossRefGoogle Scholar
  68. 68.
    Gu W, Zhou Z, Ma J, Sun X, Lu Z (2004) Analysis of synonymous codon usage in SARS coronavirus and other viruses in the Nidovirales. Virus Res 101:155–161PubMedCrossRefGoogle Scholar
  69. 69.
    Lynn DJ, Singer GA, Hickey DA (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30:4272–4277PubMedCrossRefGoogle Scholar
  70. 70.
    Wang HC, Hickey DA (2006) Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol 7(Suppl 1):S6CrossRefGoogle Scholar
  71. 71.
    Powell JR, Morivama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Virology, Joint Laboratory of Invertebrate Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations