Archives of Virology

, Volume 153, Issue 12, pp 2253–2261 | Cite as

Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells

  • Yan Su
  • Huai-Yi Yang
  • Bao-Jiang Zhang
  • Hong-Ling Jia
  • Po Tien
Original Article


Binding to and infection of human cells is essential for avian influenza virus transmission. Since virus binding is not always predictive for efficient infection of the cells, here we wished to investigate how hemagglutinin (HA) mutations of avian influenza virus H5N1 influence virus post-binding events in a single cycle of replication. One mutation observed in H5 HA of avian and natural human isolates from mainland China, Hong Kong, Vietnam and Thailand was identified and analyzed. The effects of the mutation on receptor binding, fusion and virus entry into cultured cells were investigated using hemadsorption, polykaryon formation and pseudotyped virus that express luciferase in the cytoplasm of transduced cell. Our results revealed that replacing aspartic acid at residue 94 with asparagine enhanced virus fusion activity and increased the binding of HA to sialic acid α2,6 galactose, while it decreased pseudotyped virus entry into cells expressing the avian type receptor, sialic acid α2,3 galactose. Our result may have implications for the understanding of the role of HA mutations in virus entry into live cells that exclusively display one type of receptor.



Avian influenza virus




Wild type


Sialic acid


Receptor binding site


  1. 1.
    Chu VC, Whittaker GR (2004) Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci USA 101:18153–18158PubMedCrossRefGoogle Scholar
  2. 2.
    Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23PubMedCrossRefGoogle Scholar
  3. 3.
    Deng HK, Unutmaz D, KewalRamani VN, Littman DR (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300PubMedCrossRefGoogle Scholar
  4. 4.
    Eisen MB, Sabesan S, Skehel JJ, Wiley DC (1997) Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. Virology 232:19–31PubMedCrossRefGoogle Scholar
  5. 5.
    Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, Matrosovich MN, Olsen CW, Klimov AI (2005) Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 114:15–22PubMedCrossRefGoogle Scholar
  6. 6.
    Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y (2008) Human infection with highly pathogenic H5N1 influenza virus. Lancet 371:1464–1475PubMedCrossRefGoogle Scholar
  7. 7.
    Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102:11–23PubMedCrossRefGoogle Scholar
  8. 8.
    Glaser L, Stevens J, Zamarin D, Wilson IA, Garcia-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79:11533–11536PubMedCrossRefGoogle Scholar
  9. 9.
    Hartley CA, Jackson DC, Anders EM (1992) Two distinct serum mannose-binding lectins function as beta inhibitors of influenza virus: identification of bovine serum beta inhibitor as conglutinin. J Virol 66:4358–4363PubMedGoogle Scholar
  10. 10.
    Harvey R, Martin AC, Zambon M, Barclay WS (2004) Restrictions to the adaptation of influenza a virus h5 hemagglutinin to the human host. J Virol 78:502–507PubMedCrossRefGoogle Scholar
  11. 11.
    Huddleston JA, Brownlee GG (1982) The sequence of the nucleoprotein gene of human influenza A virus, strain A/NT/60/68. Nucleic Acids Res 10:1029–1038PubMedCrossRefGoogle Scholar
  12. 12.
    Ilyushina NA, Rudneva IA, Gambaryan AS, Tuzikov AB, Bovin NV (2004) Receptor specificity of H5 influenza virus escape mutants. Virus Res 100:237–241PubMedCrossRefGoogle Scholar
  13. 13.
    Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y (1997) Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499PubMedCrossRefGoogle Scholar
  14. 14.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9PubMedCrossRefGoogle Scholar
  15. 15.
    Katz JM, Lu X, Tumpey TM, Smith CB, Shaw MW, Subbarao K (2000) Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol 74:10807–10810PubMedCrossRefGoogle Scholar
  16. 16.
    Kaverin NV, Matrosovich MN, Gambaryan AS, Rudneva IA, Shilov AA, Varich NL, Makarova NV, Kropotkina EA, Sinitsin BV (2000) Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes. Virus Res 66:123–129PubMedCrossRefGoogle Scholar
  17. 17.
    Kogure T, Suzuki T, Takahashi T, Miyamoto D, Hidari KI, Guo CT, Ito T, Kawaoka Y, Suzuki Y (2006) Human trachea primary epithelial cells express both sialyl(alpha2–3)Gal receptor for human parainfluenza virus type 1 and avian influenza viruses, and sialyl(alpha2–6)Gal receptor for human influenza viruses. Glycoconj J 23:101–106PubMedCrossRefGoogle Scholar
  18. 18.
    Kuiken T, Holmes EC, McCauley J, Rimmelzwaan GF, Williams CS, Grenfell BT (2006) Host species barriers to influenza virus infections. Science (New York) 312:394–397Google Scholar
  19. 19.
    Lin AH, Cannon PM (2002) Use of pseudotyped retroviral vectors to analyze the receptor-binding pocket of hemagglutinin from a pathogenic avian influenza A virus (H7 subtype). Virus Res 83:43–56PubMedCrossRefGoogle Scholar
  20. 20.
    Martin J, Wharton SA, Lin YP, Takemoto DK, Skehel JJ, Wiley DC, Steinhauer DA (1998) Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 241:101–111PubMedCrossRefGoogle Scholar
  21. 21.
    Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512PubMedCrossRefGoogle Scholar
  22. 22.
    Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S (2001) Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology 289:74–85PubMedCrossRefGoogle Scholar
  23. 23.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 virus attachment to lower respiratory tract. Science (New York) 312:399Google Scholar
  24. 24.
    Rimmelzwaan GF, Nieuwkoop NJ, de Mutsert G, Boon AC, Kuiken T, Fouchier RA, Osterhaus AD (2007) Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry. Virus Res 129:175–181PubMedCrossRefGoogle Scholar
  25. 25.
    Rott R, Klenk HD, Nagai Y, Tashiro M (1995) Influenza viruses, cell enzymes, and pathogenicity. Am J Respir Crit Care Med 152:S16–S19PubMedGoogle Scholar
  26. 26.
    Shinya K, Kawaoka Y (2006) Influenza virus receptors in the human airway. Uirusu 56:85–89PubMedCrossRefGoogle Scholar
  27. 27.
    Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355:1143–1155PubMedCrossRefGoogle Scholar
  28. 28.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410PubMedCrossRefGoogle Scholar
  29. 29.
    Suzuki Y (2000) Receptor sialylsugar chains as determinants of host range of influenza viruses. Nippon Rinsho 58:2206–2210PubMedGoogle Scholar
  30. 30.
    Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y (1998) The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. J Virol 72:7626–7631PubMedGoogle Scholar
  31. 31.
    Wan H, Perez DR (2007) Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81:5181–5191PubMedCrossRefGoogle Scholar
  32. 32.
    Wang H, Feng Z, Shu Y, Yu H, Zhou L, Zu R, Huai Y, Dong J, Bao C, Wen L, Wang H, Yang P, Zhao W, Dong L, Zhou M, Liao Q, Yang H, Wang M, Lu X, Shi Z, Wang W, Gu L, Zhu F, Li Q, Yin W, Yang W, Li D, Uyeki TM, Wang Y (2008) Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371:1427–1434PubMedCrossRefGoogle Scholar
  33. 33.
    Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Kiso M, Usui T, Murata T, Lin Y, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378–382PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yan Su
    • 1
    • 2
  • Huai-Yi Yang
    • 1
  • Bao-Jiang Zhang
    • 2
  • Hong-Ling Jia
    • 1
  • Po Tien
    • 1
  1. 1.Center for Molecular Virology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Xinjiang Agricultural UniversityUrumqiPeople’s Republic of China

Personalised recommendations