Archives of Virology

, Volume 153, Issue 11, pp 2041–2048 | Cite as

Antigenic and genetic analysis of H5 influenza viruses isolated from water birds for the purpose of vaccine use

  • Kosuke Soda
  • Hiroichi Ozaki
  • Yoshihiro Sakoda
  • Norikazu Isoda
  • Yoshinari Haraguchi
  • Saori Sakabe
  • Noritaka Kuboki
  • Noriko Kishida
  • Ayato Takada
  • Hiroshi Kida
Original Article


In order to prepare H5N1 influenza virus vaccine, the hemagglutinins (HAs) of 14 H5 virus isolates from water birds in Asia were antigenically and genetically analyzed. Phylogenetic analysis of the H5 HA genes revealed that 13 isolates belong to Eurasian and the other one to North American lineages. Each of the deduced amino acid sequences of the HAs indicated a non-pathogenic profile. Antigenic analysis using a panel of monoclonal antibodies recognizing six different epitopes on the HA of A/duck/Pennsylvania/10218/1984 (H5N2) and chicken antiserum to an H5N1 reassortant strain generated between A/duck/Mongolia/54/2001 (H5N2) and A/duck/Mongolia/47/2001 (H7N1), [R(Dk/Mong-Dk/Mong) (H5N1)] showed that the HAs of highly pathogenic avian influenza (HPAI) viruses currently circulating in Asia were antigenically closely related to those of the present isolates from water birds. Mice subcutaneously injected with formalin-inactivated R(Dk/Mong-Dk/Mong) were protected from challenge with 100 mouse lethal dose of A/Viet Nam/1194/2004 (H5N1). The present results support the notion that the H5 isolates and the reassortant H5N1 strain should be useful for vaccine preparation.


  1. 1.
    Capua I, Marangon S (2003) The use of vaccination as an option for the control of avian influenza. World Organization for animal health international committee 71st general session, Paris, 18–23 May 2003. SG_12_CS3E.pdf
  2. 2.
    Chen H, Smith GJ, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JS, Guan Y (2005) Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436:191–192PubMedCrossRefGoogle Scholar
  3. 3.
    Felsenstein J (1989) Mathematics vs. evolution: mathematical evolutionary theory. Science 246:941–942PubMedCrossRefGoogle Scholar
  4. 4.
    Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289PubMedCrossRefGoogle Scholar
  6. 6.
    Isoda N, Sakoda Y, Kishida N, Bai GR, Matsuda K, Umemura T, Kida H (2006) Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. Arch Virol 151:1267–1279PubMedCrossRefGoogle Scholar
  7. 7.
    Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch Virol 140:1163–1172PubMedCrossRefGoogle Scholar
  8. 8.
    Kawaoka Y, Nestorowicz A, Alexander DJ, Webster RG (1987) Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain. Virology 158:218–227PubMedCrossRefGoogle Scholar
  9. 9.
    Kida H, Yanagawa R (1979) Isolation and characterization of influenza a viruses from wild free-flying ducks in Hokkaido, Japan. Zentralbl Bakteriol [Orig A] 244:135–143Google Scholar
  10. 10.
    Kida H, Brown LE, Webster RG (1982) Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology 122:38–47PubMedCrossRefGoogle Scholar
  11. 11.
    Kida H, Kawaoka Y, Naeve CW, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology 159:109–119PubMedCrossRefGoogle Scholar
  12. 12.
    Kida H, Sakoda Y (2006) Library of influenza virus strains for vaccine and diagnostic use against highly pathogenic avian influenza and human pandemics. Dev Biol (Basel) 124:69–72Google Scholar
  13. 13.
    Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H (2004) Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch Virol 149:2095–2104PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309:1206PubMedCrossRefGoogle Scholar
  15. 15.
    Mase M, Tsukamoto K, Imada T, Imai K, Tanimura N, Nakamura K, Yamamoto Y, Hitomi T, Kira T, Nakai T, Kiso M, Horimoto T, Kawaoka Y, Yamaguchi S (2005) Characterization of H5N1 influenza A viruses isolated during the 2003–2004 influenza outbreaks in Japan. Virology 332:167–176PubMedCrossRefGoogle Scholar
  16. 16.
    Muramoto Y, Le TQ, Phuong LS, Nguyen T, Nguyen TH, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Horimoto T, Kida H, Kawaoka Y (2006) Molecular characterization of the hemagglutinin and neuraminidase genes of H5N1 influenza A viruses isolated from poultry in Vietnam from 2004 to 2005. J Vet Med Sci 68:527–531PubMedCrossRefGoogle Scholar
  17. 17.
    Nettles VF, Wood JM, Webster RG (1985) Wildlife surveillance associated with an outbreak of lethal H5N2 avian influenza in domestic poultry. Avian Dis 29:733–741PubMedCrossRefGoogle Scholar
  18. 18.
    Okazaki K, Takada A, Ito T, Imai M, Takakuwa H, Hatta M, Ozaki H, Tanizaki T, Nagano T, Ninomiya A, Demenev VA, Tyaptirganov MM, Karatayeva TD, Yamnikova SS, Lvov DK, Kida H (2000) Precursor genes of future pandemic influenza viruses are perpetuated in ducks nesting in Siberia. Arch Virol 145:885–893PubMedCrossRefGoogle Scholar
  19. 19.
    Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  20. 20.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. 21.
    Sakoda Y, Ito T, Okazaki K, Takada A, Ito Y, Okamatsu M, Shortridge KF, Webster RG, Kida H (2004) Preparation of panel of avian influenza viruses of different subtypes for vaccine strains against future pandemics. Intl Congr Ser 1263:674–677CrossRefGoogle Scholar
  22. 22.
    Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  23. 23.
    Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393–396PubMedCrossRefGoogle Scholar
  24. 24.
    Sugimura T, Ogawa T, Tanaka Y, Kumagai T (1981) Antigenic type of fowl plague virus isolated in Japan in 1925. Natl Inst Anim Health Q (Tokyo) 21:104–105Google Scholar
  25. 25.
    Takada A, Kuboki N, Okazaki K, Ninomiya A, Tanaka H, Ozaki H, Itamura S, Nishimura H, Enami M, Tashiro M, Shortridge KF, Kida H (1999) Avirulent Avian influenza virus as a vaccine strain against a potential human pandemic. J Virol 73:8303–8307PubMedGoogle Scholar
  26. 26.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  27. 27.
    Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179PubMedGoogle Scholar
  28. 28.
    WHO-Global-Influenza-Program-Surveillance-Network (2005) Evolution of H5N1 Avian Influenza Viruses in Asia. Emerg Infect Dis 11:1515–1521Google Scholar
  29. 29.
    WHO Website (2006) World: Areas reporting confirmed occurrence of H5N1 avian influenza in poultry and wild birds since 2003, status as of 4 Oct 2006.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kosuke Soda
    • 1
  • Hiroichi Ozaki
    • 2
  • Yoshihiro Sakoda
    • 1
  • Norikazu Isoda
    • 1
  • Yoshinari Haraguchi
    • 1
  • Saori Sakabe
    • 1
  • Noritaka Kuboki
    • 1
  • Noriko Kishida
    • 3
  • Ayato Takada
    • 3
  • Hiroshi Kida
    • 1
    • 3
  1. 1.Department of Disease Control, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Veterinary Microbiology, Faculty of AgricultureTottori UniversityTottoriJapan
  3. 3.Research Center for Zoonosis ControlHokkaido UniversitySapporoJapan

Personalised recommendations