Skip to main content
Log in

Equine arteritis virus: a new isolate from the presumable first carrier stallion in Argentina and its genetic relationships among the four reported unique Argentinean strains

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Equine arteritis virus (EAV) was isolated from a testicle of the presumable first stallion infected with EAV in Argentina. This virus isolate (named LT-LP-ARG) was confirmed by GP5-specific PCR and indirect immunofluorescence assays. The PCR product was sequenced, and the phylogenetic analysis revealed that the LT-LP-ARG strain of EAV forms a monophyletic group, together with other strains previously isolated in our laboratory (LP02 group). However, all Argentinean EAV strains belong to a polyphyletic group. We believe that the virus isolate presented in this report could be the origin of EAV infection in our country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Balasuriya UBR, Heidner WH, Hedges JF, Williams JC, Davis NL, Johnston RE, MacLachlan NJ (2000) Expression of two major envelope proteins of equine arteritis virus as a heterodimer is necessary for induction of neutralizing antibodies in mice immunized with recombinant Venezuelan equine encephalitis virus replicon particles. J Virol 74:10623–10630

    Article  PubMed  CAS  Google Scholar 

  2. Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633

    PubMed  CAS  Google Scholar 

  3. Chirnside ED, Wearing CM, Binns MM, Mumford JA (1994) Comparison of M and N gene sequences distinguishes variation amongst equine arteritis virus isolates. J Gen Virol 75:1491–1497

    Article  PubMed  CAS  Google Scholar 

  4. Doll ER, Bryans JT, McCollum WH, Crowe MEW (1957) Isolation of a filterable agent causing arteritis of horses and abortion in mares. Its differentiation from the equine abortion (influenza) virus. Cornell Vet 47:3–41

    PubMed  Google Scholar 

  5. Echeverría MG, Pecoraro MR, Galosi CM, Etcheverriagaray ME, Nosetto EO (2003) The first isolation of equine arteritis virus in Argentina. Rev Sci Tech 22:1029–1033

    PubMed  Google Scholar 

  6. Echeverría MG, Díaz S, Metz GE, Serena MS, Panei CJ, Nosetto EO (2007) Genetic typing of Equine Arteritis Virus isolates from Argentina. Virus Genes 35:313–20

    Article  PubMed  Google Scholar 

  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. Filatov DA (2002) Proseq: a software for preparation and evolutionary analysis of DNA sequence data set. Mol Ecol Notes 2:621–624

    Article  CAS  Google Scholar 

  9. Goloboff P, Nixon K, Farris J (2003) (TNT) Tree analysis using new technology (Published by the authors). Tucumán, Argentina

    Google Scholar 

  10. Guthrie AL, Howell PG, Hedges JF, Bosman AM, Balasuriya UB, McCollum WH, Timoney PJ, MacLachlan NJ (2003) Lateral transmission of equine arteritis virus among Lipizzaner stallions in South Africa. Equine Vet J 35:596–600

    Article  PubMed  CAS  Google Scholar 

  11. Hall TA (1999) BioEdit: a user friendly biological sequences alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Sym Ser 41:95–98

    CAS  Google Scholar 

  12. Hornyak A, Bakonyi T, Tekes G, Szeredi L, Rusvai M (2005) A novel subgroup among genotypes of Equine Arteritis virus: genetic comparison of 40 strains. J Vet Med Sci B 52:1–7

    Article  Google Scholar 

  13. Larsen LE, Storgaard T, Holm E (2001) Phylogenetic characterization of the GL sequences of Equine Arteritis Virus isolated from semen of asymptomatic stallions and fatal cases of Equine Viral Arteritis in Denmark. Vet Microbiol 80:339–346

    Article  PubMed  CAS  Google Scholar 

  14. Little TV, Holyoak GR, McCollum WH, Timoney PJ (1992) Output of equine arteritis virus from persistently infected stallions is testosterone dependent. In: Plowright W, Rossdale PD, Wade JF (eds) Proceedings of the 6th international conference on equine infectious diseases, Cambridge, 1991. R & W Publications, Newmarket, pp 225–229

    Google Scholar 

  15. McCollum WH (1969) Development of a modified virus strain and vaccine for equine viral arteritis. JAVMA 155:318–322

    PubMed  CAS  Google Scholar 

  16. McCollum WH, Prickett ME, Bryans JT (1971) Temporal distribution of equine arteritis virus in respiratory mucosa, tissues and body fluids of horses infected by inhalation. Res Vet Sci 2:459–464

    Google Scholar 

  17. Mittelholzer C, Johansson I, Olsson AK, Roneus M, Klingeborn B, Belak S (2006) Recovery of Swedish equine arteritis viruses from semen by cell culture isolation and RNA transfection. J Virol Meth 133:48–52

    Article  CAS  Google Scholar 

  18. Mittelholzer C, Stadejek T, Johansson I, Baule C, Ciabatti I, Hannant D, Paton D, Autorino GL, Nowotny N, Belak S (2006) Extended phylogeny of equine arteritis virus: division into new subgroups. J Vet Med B 53:55–58

    Article  CAS  Google Scholar 

  19. O. I. E. (2004) Equine viral arteritis. In: Manual of standards for diagnostic test and vaccines for terrestrial animals, 5th edn. Office International des Epizooties, OIE Standards Commission, Paris

  20. Snijder EJ (2001) Arteriviruses. In: Fields virology. Knipe DM, Howley PM (eds) Lippincott Williams y Wilkins, Philadelphia, pp 1205–1220

  21. Stadejek T, Bjorklund H, Ros Bascunana C, Ciabatti IM, Scicluna MT, Amaddeo D, McCollum WH, Autorino GL, Timoney PJ, Paton DJ, Klingeborn B, Belak S (1999) Genetic diversity of equine arteritis virus. J Gen Virol 80:691–699

    PubMed  CAS  Google Scholar 

  22. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and others methods). Version 4. Editorial Sinauer Associates, Sunderland

    Google Scholar 

  23. Timoney PJ, McCollum WH, Roberts AW, Murphy TW (1986) Demonstration of the carrier state in naturally acquired equine arteritis virus infection in the stallion. Res Vet Sci 41:279–280

    PubMed  CAS  Google Scholar 

  24. Timoney PJ, McCollum WH, Roberts AW (1987) Detection of the carrier state in stallions persistently infected with equine arteritis virus. Proc Am Assoc Equine Pract 32:57–65

    Google Scholar 

  25. Timoney PJ, McCollum WH (1993) Equine viral arteritis. Vet Clin N Am Equine Pract 9:295–309

    CAS  Google Scholar 

  26. Thompson J, Gibson T, Pleuniak F, Jeanmougin F, Higgins D (1997) CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  27. Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolitic processing in the Nidovirales. J Gen Virol 81:853–879

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The assistance of Ms. M. Mondragón, Ms. A. Conde and Mr. C. Leguizamón are highly acknowledged. This study was supported by a FONCyT grant (PICT 2003 01-13451). Special thanks to Dr. E. Mórtola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Echeverría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, G.E., Serena, M.S., Ocampos, G.M. et al. Equine arteritis virus: a new isolate from the presumable first carrier stallion in Argentina and its genetic relationships among the four reported unique Argentinean strains. Arch Virol 153, 2111–2115 (2008). https://doi.org/10.1007/s00705-008-0224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0224-5

Keywords

Navigation