Advertisement

Archives of Virology

, Volume 152, Issue 9, pp 1665–1678 | Cite as

Sequence determination of variable regions within the genomes of gallid herpesvirus-2 pathotypes

  • S. J. Spatz
  • R. F. Silva
Article

Summary

Comparative genomic studies of attenuated and virulent strains of Gallid herpesvirus 2 (GaHV-2) have identified 6 regions of sequence variability. These regions include the open reading frames (ORFs) encoding UL36 and UL49 and regions devoid of large ORFs (132-bp repeats, a-like sequences and the junctions flanking the unique short region). Our data indicate that the carboxyl terminus of UL36 contains regions of heterogeneity that are unique to CVI988-derived attenuated strains. A deletion of the TKSERT domain and a glycine245 polymorphism in the UL49 proteins were also identified in these derivatives. Phylogenetic analyses of both UL36 and UL49 sequences indicate that CVI988-derived strains partition differently from other attenuated strains (RM-1 and R2/23), indicating that additional mutations contribute to attenuation. In very virulent and very virulent plus strains a single nucleotide polymorphism (SNP) was identified within the 132-bp tandem repeats. Within the junctions flanking the unique short region, these strains also contain deletions in sequences that are predicted to bind the transcription factor NF kappaB. In some attenuated strains, deletions were also identified in the latency-associated transcript (LAT) promoters and adjacent regions encoding microRNAs. These results indicate that virulence is likely multi-factorial with contributions from both multiple genes and cis-acting sites.

Keywords

UL49 Gene Gallid Herpesvirus Southeast Poultry Research Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso, CL, Tulman, ER, Lu, Z, Zsak, L, Rock, DL, Kutish, GF 2001The genome of turkey herpesvirusJ Virol75971978PubMedCrossRefGoogle Scholar
  2. Blaho, JA, Mitchell, C, Roizman, B 1994An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene productsJ Biol Chem2691740117410PubMedGoogle Scholar
  3. Burnside, J, Bernberg, E, Anderson, A, Lu, C, Meyers, BC, Green, PJ, Jain, N, Isaacs, G, Morgan, RW 2006Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcriptJ Virol8087788786PubMedCrossRefGoogle Scholar
  4. Calnek, BW 2001Pathogenesis of Marek’s disease virus infectionHirai, K eds. Current topics in microbiology and immunologySpringerBerlin Heidelberg New York Tokyo2555Google Scholar
  5. Chou, J, Roizman, B 1990The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn+J Virol6410141020PubMedGoogle Scholar
  6. Corpet, F 1988Multiple sequence alignment with hierarchical clusteringNucleic Acids Res161088110890PubMedCrossRefGoogle Scholar
  7. Deng, H, Dewhurst, S 1998Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6J Virol72320329PubMedGoogle Scholar
  8. Dorange, F, El Mehdaoui, S, Pichon, C, Coursaget, P, Vautherot, JF 2000Marek’s disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16J Gen Virol8122192230PubMedGoogle Scholar
  9. Dorange, F, Tischer, BK, Vautherot, JF, Osterrieder, N 2002Characterization of Marek’s disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growthJ Virol7619591970PubMedCrossRefGoogle Scholar
  10. Edgar, RC 2004MUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Res3217921797PubMedCrossRefGoogle Scholar
  11. Elliott, G, O’Reilly, D, O’Hare, P 1999Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22J Virol7362036206PubMedGoogle Scholar
  12. Endoh, D, Ito, M, Cho, KO, Kon, Y, Morimura, T, Hayashi, M, Kuwabara, M 1998Retroviral sequence located in border region of short unique region and short terminal repeat of Md5 strain of Marek’s disease virus type 1J Vet Med Sci60227235PubMedCrossRefGoogle Scholar
  13. Heinemeyer, T, Wingender, E, Reuter, I, Hermjakob, H, Kel, AE, Kel, OV, Ignatieva, EV, Ananko, EA, Podkolodnaya, OA, Kolpakov, FA, Podkolodny, NL, Kolchanov, NA 1998Databases on transcriptional regulation: TRANSFAC, TRRD and COMPELNucleic Acids Res26362367PubMedCrossRefGoogle Scholar
  14. Izumiya, Y, Jang, H, Ono, M, Mikami, T 2001A Complete Genomic DNA Sequence of Marek’s Disease Virus Type 2, Strain HPRS24Hirai, K eds. Current topics in microbiology and immunologySpringerBerlin Heidelberg New York Tokyo191221Google Scholar
  15. Jones, D, Brunovskis, P, Witter, R, Kung, HJ 1996Retroviral insertional activation in a herpesvirus: transcriptional activation of US genes by an integrated long terminal repeat in a Marek’s disease virus cloneJ Virol7024602467PubMedGoogle Scholar
  16. Jones, D, Isfort, R, Witter, R, Kost, R, Kung, HJ 1993Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequencesProc Natl Acad Sci USA9038553859PubMedCrossRefGoogle Scholar
  17. Katsumata, A, Iwata, A, Ueda, S 1998Cis-acting elements in the lytic origin of DNA replication of Marek’s disease virus type 1J Gen Virol7930153018PubMedGoogle Scholar
  18. Kay, BK, Williamson, MP, Sudol, M 2000The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domainsFASEB J14231241PubMedGoogle Scholar
  19. Kingham, B, Zelnik, V, Kopacek, J, Majerciak, V, Ney, E, Schmidt, C 2001The genome of herpesvirus of turkeys: comparative analysis with Marek’s disease virusesJ Gen Virol8211231135PubMedGoogle Scholar
  20. Klupp, BG, Fuchs, W, Granzow, H, Nixdorf, R, Mettenleiter, TC 2002Pseudorabies virus UL36 tegument protein physically interacts with the UL37 proteinJ Virol7630653071PubMedCrossRefGoogle Scholar
  21. Kost, R, Jones, D, Isfort, R, Witter, R, Kung, HJ 1993Retrovirus insertion into herpesvirus: characterization of a Marek’s disease virus harboring a solo LTRVirology192161169PubMedCrossRefGoogle Scholar
  22. Kumar, S, Tamura, K, Nei, M 2004MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignmentBrief Bioinform5150163PubMedCrossRefGoogle Scholar
  23. Lee, LF, Wu, P, Sui, D, Ren, D, Kamil, J, Kung, HJ, Witter, RL 2000The complete unique long sequence and the overall genomic organization of the GA strain of Marek’s disease virusProc Natl Acad Sci USA9760916096PubMedCrossRefGoogle Scholar
  24. Lupiani, B, Lee, LF, Reddy, SM 2001Protein-coding content of the sequence of Marek’s disease virus serotype 1Hirai, K eds. Current topics in microbiology and immunologySpringerBerlin Heidelberg New York Tokyo159190Google Scholar
  25. McKie, EA, Ubukata, E, Hasegawa, S, Zhang, S, Nonoyama, M, Tanaka, A 1995The transcripts from the sequences flanking the short component of Marek’s disease virus during latent infection form a unique family of 3′-coterminal RNAsJ Virol6913101314PubMedGoogle Scholar
  26. Morgan, RW, Xie, Q, Cantello, JL, Miles, AM, Bernberg, EL, Kent, J, Anderson, A 2001Marek’s disease virus latencyHarai, K eds. Current topics in microbiology and immunologySpringerBerlin Hiedelberg New York Tokyo223243Google Scholar
  27. Nair, V 2005Evolution of Marek’s disease – a paradigm for incessant race between the pathogen and the hostVet J170175183PubMedGoogle Scholar
  28. Niikura, M, Dodgson, J, Cheng, H 2005Direct evidence of host genome acquisition by the alphaherpesvirus Marek’s disease virusArch Virol151537549PubMedCrossRefGoogle Scholar
  29. Nugent, J, Birch-Machin, I, Smith, KC, Mumford, JA, Swann, Z, Newton, JR, Bowden, RJ, Allen, GP, Davis-Poynter, N 2006Analysis of equid herpesvirus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuropathogenic versus nonneuropathogenic disease outbreaksJ Virol8040474060PubMedCrossRefGoogle Scholar
  30. Osterrieder, K, Vautherot, J-F 2004The genome content of Marek’s disease-like virusesDavison, FNair, V eds. Marek’s disease: an emerging problemElsevierAmsterdamGoogle Scholar
  31. Osterrieder, N, Kamil, JP, Schumacher, D, Tischer, BK, Trapp, S 2006Marek’s disease virus: from miasma to modelNat Rev Microbiol4283294PubMedCrossRefGoogle Scholar
  32. Perng, GC, Mott, KR, Osorio, N, Yukht, A, Salina, S, Nguyen, QH, Nesburn, AB, Wechsler, SL 2002Herpes simplex virus type 1 mutants containing the KOS strain ICP34.5 gene in place of the McKrae ICP34.5 gene have McKrae-like spontaneous reactivation but non-McKrae-like virulenceJ Gen Virol8329332942PubMedGoogle Scholar
  33. Phelan, A, Elliott, G, O’Hare, P 1998Intercellular delivery of functional p53 by the herpesvirus protein VP22Nat Biotechnol16440443PubMedCrossRefGoogle Scholar
  34. Retief, JD 2000Phylogenetic analysis using PHYLIPMethods Mol Biol132243258PubMedGoogle Scholar
  35. Rispens, BH, van Vloten, H, Mastenbroek, N, Maas, HJ, Schat, KA 1972Control of Marek’s disease in the Netherlands. I. Isolation of an avirulent Marek’s disease virus (strain CVI 988) and its use in laboratory vaccination trialsAvian Dis16108125PubMedCrossRefGoogle Scholar
  36. Silva, RF, Gimeno, I 2007Oncogenic Marek’s disease viruses lacking the 132 base pair repeats can still be attenuated by serial in vitro cell culture passagesVirus Genes348790PubMedCrossRefGoogle Scholar
  37. Silva, RF, Lee, LF, Kutish, GF 2001The genomic structure of Marek’s disease virusHirai, K eds. Current topics in microbiology and immunologySpringerBerlin Hiedelberg New York Tokyo143158Google Scholar
  38. Silva, RF, Reddy, SM, Lupiani, B 2004Expansion of a unique region in the Marek’s disease virus genome occurs concomitantly with attenuation but is not sufficient to cause attenuationJ Virol78733740PubMedCrossRefGoogle Scholar
  39. Silva, RF, Witter, RL 1985Genomic expansion of Marek’s disease virus DNA is associated with serial in vitro passageJ Virol54690696PubMedGoogle Scholar
  40. Spatz, SJ, Petherbridge, L, Zhao, Y, Nair, V 2007Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek’s disease virusJ Gen Virol8810801096PubMedCrossRefGoogle Scholar
  41. Spatz, SJ, Silva, RF 2006Polymorphisms in the repeat long regions of oncogenic and attenuated pathotypes of Marek’s disease virus 1Virus Genes354153PubMedCrossRefGoogle Scholar
  42. Tulman, ER, Afonso, CL, Lu, Z, Zsak, L, Rock, DL, Kutish, GF 2000The genome of a very virulent Marek’s disease virusJ Virol7479807988PubMedCrossRefGoogle Scholar
  43. Vittone, V, Diefenbach, E, Triffett, D, Douglas, MW, Cunningham, AL, Diefenbach, RJ 2005Determination of interactions between tegument proteins of herpes simplex virus type 1J Virol7995669571PubMedCrossRefGoogle Scholar
  44. Witter, RL 1997Increased virulence of Marek’s disease virus field isolatesAvian Dis41149163PubMedCrossRefGoogle Scholar
  45. Witter RL (2001) Marek’s disease virus vaccines-past, present and future (chicken vs. virus-a battle of the centuries). In: Schat KA, Morgan RM, Parcells MS, Spencer JL (ed) Current progresson Marek’s disease research. Proc, 6th International Symposium on Marek’s disease. American Association of Avian Pathologists, Kennett Square, PAGoogle Scholar
  46. Witter, RL 2001Protective efficacy of Marek’s disease vaccinesHirai, K eds. Current topics in microbiology and immunologySpringerBerlin Hiedelberg New York Tokyo5790Google Scholar
  47. Witter, RL, Calnek, BW, Buscaglia, C, Gimeno, IM, Schat, KA 2005Classification of Marek’s disease viruses according to pathotype: philosophy and methodologyAvian Pathol347590PubMedCrossRefGoogle Scholar
  48. Witter, RL, Li, D, Jones, D, Lee, LF, Kung, HJ 1997Retroviral insertional mutagenesis of a herpesvirus: a Marek’s disease virus mutant attenuated for oncogenicity but not for immunosuppression or in vivo replicationAvian Dis41407421PubMedCrossRefGoogle Scholar
  49. Witter, RL, Nazerian, K, Purchase, HG, Burgoyne, GH 1970Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virusBiken J135357Google Scholar
  50. Zarrinpar, A, Bhattacharyya, RP, Lim, WA 2003The structure and function of proline recognition domainsSci STKE2003RE8PubMedCrossRefGoogle Scholar
  51. Zhao Y, Smith L, Petherbridge L, Baigent S, Nair V (2006) Investigation on the deubiquitinating enzyme activity of Marek’s Disease Virus UL36 homolog. In: Parcells MS, Morgan RW, Burnside J, Schmidt CJ, Bernberg EL, Eppler E (eds) 4th International Workshop on the Molecular Pathogenesis of Marek’s Disease Virus, pp 27Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. J. Spatz
    • 1
  • R. F. Silva
    • 2
  1. 1.United States Department of AgricultureSoutheast Poultry Research Laboratory, Agricultural Research ServiceAthensUSA
  2. 2.United States Department of AgricultureAvian Disease and Oncology Laboratory, Agricultural Research ServiceEast LansingUSA

Personalised recommendations