Archives of Virology

, Volume 152, Issue 7, pp 1251–1258 | Cite as

The evolutionary dynamics of canid and mongoose rabies virus in southern Africa

  • P. L. Davis
  • A. Rambaut
  • H. Bourhy
  • E. C. Holmes


Two variants of rabies virus (RABV) currently circulate in southern Africa: canid RABV, mainly associated with dogs, jackals, and bat-eared foxes, and mongoose RABV. To investigate the evolutionary dynamics of these variants, we performed coalescent-based analyses of the G-L inter-genic region, allowing for rate variation among viral lineages through the use of a relaxed molecular clock. This revealed that mongoose RABV is evolving more slowly than canid RABV, with mean evolutionary rates of 0.826 and 1.676 × 10−3 nucleotide substitutions per site, per year, respectively. Additionally, mongoose RABV exhibits older genetic diversity than canid RABV, with common ancestors dating to 73 and 30 years, respectively, and while mongoose RABV has experienced exponential population growth over its evolutionary history in Africa, populations of canid RABV have maintained a constant size. Hence, despite circulating in the same geographic region, these two variants of RABV exhibit striking differences in evolutionary dynamics which are likely to reflect differences in their underlying ecology.


Canid Rabies Rabies Virus Much Recent Common Ancestor High Probability Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badrane, H, Bahloul, C, Perrin, P, Tordo, N 2001Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicityJ Virol7532683276PubMedCrossRefGoogle Scholar
  2. Badrane, H, Tordo, N 2001Host switching in Lyssavirus history from the chiroptera to the carnivora ordersJ Virol7580968104PubMedCrossRefGoogle Scholar
  3. Bourhy, H, Kissi, B, Badrane, H, Tordo, N 1993Genetic variability analysis of lyssavirusMed Maladies Infect23533536CrossRefGoogle Scholar
  4. Chaparro, F, Esterhuysen, JJ 1993The role of the yellow mongoose (Cynictis penicillata) in the epidemiology of rabies in South Africa: preliminary resultsOnderstepoort J Vet Res60373377PubMedGoogle Scholar
  5. David, D, Yakobson, BA, Gershkovich, L, Gayer, S 2004Tracing the regional source of rabies infection in an Israeli dog by viral analysisVet Rec155496497PubMedGoogle Scholar
  6. Dietzschold, B, Morimoto, K, Hooper, DC, Smith, JS, Rupprecht, CE, Koprowski, H 2000Genotypic and phenotypic diversity of rabies virus variants involved in human rabies: implications for postexposure prophylaxisJ Hum Virol35057PubMedGoogle Scholar
  7. Drummond, AJ, Rambaut, A, Shapiro, B, Pybus, OG 2005Bayesian coalescent inference of past population dynamics from molecular sequencesMol Biol Evol2211851192PubMedCrossRefGoogle Scholar
  8. Drummond AJ, Rambaut A (2003) BEAST v1.3. Available from
  9. Hanada, K, Suzuki, Y, Gojobori, T 2004A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modesMol Biol Evol2110741080PubMedCrossRefGoogle Scholar
  10. Holmes, EC, Woelk, CH, Kassis, R, Bourhy, H 2002Genetic constraints and the adaptive evolution of rabies virus in natureVirology292247257PubMedCrossRefGoogle Scholar
  11. Hughes, GJ, Orciari, LA, Rupprecht, CE 2005Evolutionary timescale of rabies virus adaptation to North American bats inferred from the substitution rate of the nucleoprotein geneJ Gen Virol8614671474PubMedCrossRefGoogle Scholar
  12. Hughes, GJ, Paez, A, Boshell, J, Rupprecht, CE 2004A phylogenetic reconstruction of the epidemiological history of canine rabies virus variants in ColombiaInfect Genet Evol44551PubMedCrossRefGoogle Scholar
  13. King, AA, Meredith, CD, Thomson, GR 1993Canid and viverrid rabies viruses in South AfricaOnderstepoort J Vet Res60295299PubMedGoogle Scholar
  14. Kissi, B, Tordo, N, Bourhy, H 1995Genetic polymorphism in the rabies virus nucleoprotein geneVirology209526537PubMedCrossRefGoogle Scholar
  15. Knobel, DL, Cleaveland, S, Coleman, PG, Fevre, EM, Meltzer, MI, Miranda, MEG, Shaw, A, Zinsstag, J, Meslin, FX 2005Re-evaluating the burden of rabies in Africa and AsiaBulletin WHO83360368Google Scholar
  16. Kuzmin, IV, Hughes, GJ, Botvinkin, AD, Orciari, LA, Rupprecht, CE 2005Phylogenetic relationships of Irkut and West Caucasian bat viruses within the Lyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirus genotype definitionVirus Res1112843PubMedCrossRefGoogle Scholar
  17. Nadin-Davis, SA, Abdel-Malik, M, Armstrong, J, Wandeler, AI 2002Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoproteinVirology298286305PubMedCrossRefGoogle Scholar
  18. Nel, L, Jacobs, J, Jaftha, J, Meredith, C 1997Natural spillover of a distinctly Canidae-associated biotype of rabies virus into an expanded wildlife host range in southern AfricaVirus Genes157982PubMedCrossRefGoogle Scholar
  19. Nel, LH, Sabeta, CT, von Teichman, B, Jaftha, JB, Rupprecht, CE, Bingham, J 2005Mongoose rabies in southern Africa: a re-evaluation based on molecular epidemiologyVirus Res109165173PubMedCrossRefGoogle Scholar
  20. Penzhorn, BL, Chaparro, F 1994Prevalence of Babesia cynicti infection in three populations of yellow mongooses (Cynictis penicillata) in the Transvaal, South AfricaJ Wildl Dis30557559PubMedGoogle Scholar
  21. Ravkov, EV, Smith, JS, Nichol, ST 1995Rabies virus glycoprotein gene contains a long 3′-noncoding region which lacks pseudogene propertiesVirology206718723PubMedCrossRefGoogle Scholar
  22. Sabeta, CT, Bingham, J, Nel, LH 2003Molecular epidemiology of canid rabies in Zimbabwe and South AfricaVirus Res91203211PubMedCrossRefGoogle Scholar
  23. Swanepoel, R, Barnard, BJH, Meredith, CD, Bishop, GC, Bruckner, GK, Foggin, CM, Hubschle, OJB 1993Rabies in Southern AfricaOnderstepoort J Vet Res60325346PubMedGoogle Scholar
  24. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassGoogle Scholar
  25. Taylor, PJ 1993A systematic and population genetic approach to the rabies problem in the yellow mongoose (Cynictis penicillata)Onderstepoort J Vet Res60379387PubMedGoogle Scholar
  26. Tordo, N, Poch, O, Ermine, A, Keith, G, Rougeon, F 1986Walking along the rabies genome: is the large G-L intergenic region a remnant geneProc Natl Acad Sci USA8339143918PubMedCrossRefGoogle Scholar
  27. von Teichman, BF, Thomson, GR, Meredith, CD, Nel, LH 1995Molecular epidemiology of rabies virus in South Africa: evidence for two distinct virus groupsJ Gen Virol767382PubMedCrossRefGoogle Scholar
  28. Ohta, T 1992The nearly neutral theory of molecular evolutionAnn Rev Ecol Syst23263286CrossRefGoogle Scholar

Additional References

  1. Nadin-Davis, SA, Sampath, MI, Casey, GA, Tinline, RR, Wandeler, AI 1999Phylogeographic patterns exhibited by Ontario rabies virus variantsEpidemiol Infect123325336PubMedCrossRefGoogle Scholar
  2. Sato, G, Itou, T, Shoji, Y, Miura, Y, Mikami, T, Ito, M, Kurane, I, Samara, SI, Carvalho, AA, Nociti, DP, Ito, FH, Sakai, T 2004Genetic and phylogenetic analysis of glycoprotein of rabies virus isolated from several species in BrazilJ Vet Med Sci66747753PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. L. Davis
    • 1
  • A. Rambaut
    • 1
  • H. Bourhy
    • 2
  • E. C. Holmes
    • 3
    • 4
  1. 1.Department of ZoologyUniversity of OxfordOxfordU.K.
  2. 2.UPRE Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut PasteurParisFrance
  3. 3.Center for Infectious Disease Dynamics, Department of Biology, Mueller LaboratoryThe Pennsylvania State UniversityUniversity ParkU.S.A.
  4. 4.Fogarty International Center, National Institutes of HealthBethesdaU.S.A.

Personalised recommendations