Archives of Virology

, Volume 153, Issue 4, pp 763–781 | Cite as

Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses

  • R. W. Briddon
  • J. K. Brown
  • E. Moriones
  • J. Stanley
  • M. Zerbini
  • X. Zhou
  • C. M. Fauquet
Virology Division News

Abstract

The symptom-modulating, single-stranded DNA satellites (known as DNA-β) associated with begomoviruses (family Geminiviridae) have proven to be widespread and important components of a large number of plant diseases across the Old World. Since they were first identified in 2000, over 260 full-length sequences (∼1,360 nucleotides) have been deposited with databases, and this number increases daily. This has highlighted the need for a standardised, concise and unambiguous nomenclature for these components, as well as a meaningful and robust classification system. Pairwise comparisons of all available full-length DNA-β sequences indicate that the minimum numbers of pairs occur at a sequence identity of 78%, which we propose as the species demarcation threshold for a distinct DNA-β. This threshold value divides the presently known DNA-β sequences into 51 distinct satellite species. In addition, we propose a naming convention for the satellites that is based upon the system already in use for geminiviruses. This maintains, whenever possible, the association with the helper begomovirus, the disease symptoms and the host plant and provides a logical and consistent system for referring to already recognised and newly identified satellites.

References

  1. 1.
    Alberter B, Rezaian MA, Jeske H (2004) Replicative intermediates of Tomato leaf curl virus and its satellite DNAs. Virology 331:441–448CrossRefGoogle Scholar
  2. 2.
    Antignus Y, Lachman O, Pearlsman M, Omer S, Yunis H, Messika Y, Uko O, Koren A (2003) Squash leaf curl geminivirus––a new illegal immigrant from the western hemisphere and a threat to cucurbit crops in Israel. Abstracts 24th congress of the Israeli phytopathological society. Phytoparasitica 31:415Google Scholar
  3. 3.
    Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA β: a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121PubMedCrossRefGoogle Scholar
  4. 4.
    Briddon RW, Mansoor S, Bedford ID, Pinner MS, Markham PG (2000) Clones of cotton leaf curl geminivirus induce symptoms atypical of cotton leaf curl disease. Virus Genes 20:17–24CrossRefGoogle Scholar
  5. 5.
    Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243PubMedCrossRefGoogle Scholar
  6. 6.
    Bull SE, Tsai W-S, Briddon RW, Markham PG, Stanley J, Green SK (2004) Diversity of begomovirus DNA β satellites of non-malvaceous plants in east and south east Asia. Arch Virol 149:1193–1200PubMedCrossRefGoogle Scholar
  7. 7.
    Collmer CW, Howell SH (1992) Role of satellite RNA in the expression of symptoms caused by plant viruses. Ann Rev Phytopathol 30:419–442CrossRefGoogle Scholar
  8. 8.
    Cui X, Li G, Wang D, Hu D, Zhou XP (2005) A begomovirus DNA β-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775PubMedCrossRefGoogle Scholar
  9. 9.
    Dry I, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093PubMedCrossRefGoogle Scholar
  10. 10.
    Fauquet CM (2002) The best sequence threshold criterion for geminivirus species demarcation. http://www.danforthcenter.org/iltab/geminiviridae/speciesdemarcation.htm
  11. 11.
    Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148:405–421PubMedCrossRefGoogle Scholar
  12. 12.
    Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 1253Google Scholar
  13. 13.
    Fauquet CM, Stanley J (2005) Revising the way we conceive and name viruses below the species level: A review of geminivirus taxonomy calls for new standardized isolate descriptors. Arch Virol 150:2151–2179PubMedCrossRefGoogle Scholar
  14. 14.
    Idris AM, Abdel-Salam A, Brown JK (2006) Introduction of the new world squash leaf curl virus to squash (Cucurbita pepo) in Egypt: a potential threat to important food crops. Plant Dis 90:1262CrossRefGoogle Scholar
  15. 15.
    Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA β satellite with a begomovirus. Virology 305:310–317PubMedCrossRefGoogle Scholar
  16. 16.
    Li ZH, Xie Y, Zhou XP (2005) Tobacco curly shoot virus DNA-β is not necessary for infection but intensifies symptoms in a host-dependent manner. Phytopathology 95:902–908CrossRefPubMedGoogle Scholar
  17. 17.
    Mansoor S, Amin I, Iram S, Hussain M, Zafar Y, Malik KA, Briddon RW (2003) Breakdown of resistance in cotton to cotton leaf curl disease in Pakistan. Plant Pathol 52:784CrossRefGoogle Scholar
  18. 18.
    Mansoor S, Khan SH, Bashir A, Saeed M, Zafar Y, Malik KA, Briddon RW, Stanley J, Markham PG (1999) Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199PubMedCrossRefGoogle Scholar
  19. 19.
    Mansoor S, Briddon RW, Bull SE, Bedford ID, Bashir A, Hussain M, Saeed, Zafar MY, Malik KA, Fauquet C, Markham PG (2003) Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA-β. Arch Virol 148:1969–1986PubMedCrossRefGoogle Scholar
  20. 20.
    Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134PubMedCrossRefGoogle Scholar
  21. 21.
    McGlashan D, Polston JE, Bois D (1994) Tomato yellow leaf curl virus in Jamaica. Plant Dis 78:1219CrossRefGoogle Scholar
  22. 22.
    Polston JE, Bois D, Serra C-A, Concepcion S (1994) First report of a tomato yellow leaf curl-like geminivirus in the western hemisphere. Plant Dis 78:831CrossRefGoogle Scholar
  23. 23.
    Saeed M, Behjatnia SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA (2004) A single complementary-sense transcript of a geminiviral DNA-β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14CrossRefGoogle Scholar
  24. 24.
    Saeed, M, Zafar, Y, Randles, JW, Rezaian, A (2007) A geminivirus DNA β satellite can substitute DNA B of a bipartite virus for infection: evidence of the movement functions encoded by ORF βC1. J Gen Virol (in press)Google Scholar
  25. 25.
    Saunders K, Stanley J (1999) A nanovirus-like component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152PubMedCrossRefGoogle Scholar
  26. 26.
    Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A novel virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895PubMedCrossRefGoogle Scholar
  27. 27.
    Saunders K, Bedford ID, Stanley J (2001) Pathogenicity of a natural recombinant associated with Ageratum yellow vein disease: implications for geminivirus evolution and disease aetiology. Virology 282:38–47PubMedCrossRefGoogle Scholar
  28. 28.
    Saunders K, Salim N, Mali VR, Malathi VG, Briddon RW, Markham PG, Stanley J (2002) Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293:63–74PubMedCrossRefGoogle Scholar
  29. 29.
    Saunders K, Bedford ID, Yahara T, Stanley J (2003) The earliest recorded plant virus disease. Nature 422:831PubMedCrossRefGoogle Scholar
  30. 30.
    Simon AE, Roossinck MJ, Havelda Z (2004) Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Ann Rev Phytopathol 42:415–438CrossRefGoogle Scholar
  31. 31.
    Tan PHN, Wong SM, Wu M, Bedford ID, Saunders K, Stanley J (1995) Genome organization of ageratum yellow vein virus, a monopartite whitefly-transmitted geminivirus isolated from a common weed. J Gen Virol 76:2915–2922PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou X, Xie Y, Tao X, Zhang Z, Li Z, Fauquet CM (2003) Characterization of DNA β associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J Gen Virol 84:237–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. W. Briddon
    • 1
  • J. K. Brown
    • 2
  • E. Moriones
    • 3
  • J. Stanley
    • 4
  • M. Zerbini
    • 5
  • X. Zhou
    • 6
  • C. M. Fauquet
    • 7
  1. 1.National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
  2. 2.Department of Plant SciencesUniversity of ArizonaTucsonUSA
  3. 3.Estación Experimental “La Mayora”, Consejo Superior de Investigaciones CientíficasMálagaSpain
  4. 4.John Innes CentreNorwichUK
  5. 5.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  6. 6.Institute of BiotechnologyZhejiang UniversityHangzhouChina
  7. 7.ILTAB/Danforth Plant Science CenterSt LouisUSA

Personalised recommendations