Archives of Virology

, Volume 152, Issue 6, pp 1139–1145 | Cite as

Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants

  • I. A. Rudneva
  • T. A. Timofeeva
  • A. A. Shilov
  • K. S. Kochergin-Nikitsky
  • N. L. Varich
  • N. A. Ilyushina
  • A. S. Gambaryan
  • P. S. Krylov
  • N. V. Kaverin
Article

Summary.

Reassortants between a low-pathogenic avian influenza virus strain A/Duck/Primorie/2621/2001 (H5N2) and a high-yield human influenza virus strain A/Puerto Rico/8/34 (H1N1) were generated, genotyped and analyzed with respect to their yield in embryonated chicken eggs, pathogenicity for mice, and immunogenicity. A reassortant having HA and NA genes from A/Duck/Primorie/2621/2001 virus and 6 genes from A/Puerto Rico/8/34 virus (6:2 reassortant) replicated efficiently in embryonated chicken eggs, the yields being intermediate between the yields of the avian parent virus and those of the A/Puerto Rico/8/34 parent strain. The reassortant having the HA gene from A/Duck/Primorie/2621/2001 virus and 7 genes from A/Puerto Rico/8/34 virus (7:1 reassortant) produced low yields. A variant of the 7:1 reassortant selected by serial passages in eggs had an amino acid substitution in the hemagglutinin (N244D, H3 numbering). The variant produced yields similar to those of the 6:2 reassortant. A 5:3 reassortant generated by a back-cross of the 6:2 reassortant with the avian parent and having PB1, HA and NA genes of A/Duck/Primorie/2621/2001 virus produced higher yields than the 7:1 or 6:2 reassortants, although still lower than the yields of A/Puerto Rico/8/34 virus. The 7:1, 6:2 and 5:3 reassortants were pathogenic for mice, with the level of virulence close to A/Puerto Rico/8/34 virus, in contrast to the extremely low pathogenicity of the A/Duck/Primorie/2621/2001 parent strain. Immunization of mice with an inactivated 6:2 H5N2 reassortant provided efficient immune protection against a reassortant virus containing the HA and NA genes of a recent H5N1 isolate. The results are discussed in connection with the problem of the improvement of vaccine strains against the threatening H5N1 pandemic.

Keywords

Reverse Genetic Parent Virus Virus Reassortants H5N2 Reassortant Avian Parent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann, E, Lipatov, AS, Webby, RJ, Govorkova, EA, Webster, RG 2005Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccinesProc Natl Acad Sci USA1021291512920PubMedCrossRefGoogle Scholar
  2. Kaverin, NV, Rudneva, IA, Smirnov, YA, Finskaya, NN 1988Human-avian influenza virus reassortants: effect of reassortment pattern on multi-cycle reproduction in MDCK cellsArch Virol103117126PubMedCrossRefGoogle Scholar
  3. Kaverin, NV, Gambaryan, AS, Bovin, NV, Rudneva, IA, Shilov, AA, Khodova, OM, Varich, NL, Sinitsin, BV, Makarova, NV, Kropotkina, EA 1998Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional matchVirology244315321PubMedCrossRefGoogle Scholar
  4. Kaverin, NV, Matrosovich, MN, Gambaryan, AS, Rudneva, IA, Shilov, AA, Varich, NL, Makarova, NV, Kropotkina, EA, Sinitsin, BV 2000Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypesVirus Res66123129PubMedCrossRefGoogle Scholar
  5. Kilbourne, ED 2004Influenza pandemics: can we predict for the unpredictable?Viral Immunol17350357PubMedCrossRefGoogle Scholar
  6. Lee, CW, Senne, DA, Suarez, DL 2004Generation of reassortant influenza vaccines by reverse genetics that allows utilization of DIVA (differentiating infected from vaccinated animals strategy for the control of avian influenzaVaccine2231753181PubMedCrossRefGoogle Scholar
  7. Lipatov, AS, Govorkova, EA, Webby, AJ, Ozaki, H, Peiris, M, Guan, Y, Poon, L, Webster, RG 2004Influenza: emergence and controlJ Virol7889518959PubMedCrossRefGoogle Scholar
  8. Liu, M, Wood, JM, Ellis, T, Krauss, S, Seiler, P, Johnson, C, Hoffman, E, Humberd, J, Hulse, D, Zhang, Y, Webster, RG, Perez, DR 2003Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse geneticsVirology314580590PubMedCrossRefGoogle Scholar
  9. Lvov, DK, Yamnikova, SS, Fedyakina, IT,  et al. 2004Ecology and evolution of influenza viruses in RussiaProbl Virol491724RusGoogle Scholar
  10. Nicholson, KG, Colegate, AE, Podda, A, Stephenson, I, Wood, J, Ypma, E, Zambon, MC 2001Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomized trial of two potential vaccines against H5N1 influenzaLancet35719371943PubMedCrossRefGoogle Scholar
  11. Nicolson, C, Major, D, Wood, JM, Robertson, JS 2005Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality systemVaccine2329432952PubMedCrossRefGoogle Scholar
  12. Reed, LJ, Muench, H 1938A simple method for estimating 50% endpointsAm J Hyg27493497Google Scholar
  13. Schulman, JL, Palese, P 1976Selection and identification of influenza virus recombinants of defined genetic compositionJ Virol20248254PubMedGoogle Scholar
  14. Subarrao, K, Chen, H, Swayne, D, Mingay, L, Fodor, E, Brownlee, G, Xu, X, Lu, X, Katz, J, Cox, N, Matsuoka, Y 2003Evaluation of a genetically modified reassortant H5N1 influenza virus vaccine candidate generated by plasmid-based reverse geneticsVirology305192200CrossRefGoogle Scholar
  15. Takada, A, Kuboki, N, Okazaki, K, Ninomiya, A, Tanaka, H, Ozaki, H, Itamura, S, Nishimura, H, Enami, M, Tashiro, M, Shortridge, KF, Kida, H 1999Avirulent avian influenza virus as a vaccine strain against a potential human pandemicJ Virol7383038307PubMedGoogle Scholar
  16. Tian, G, Zhang, S, Li, Y, Bu, Z, Liu, P, Zhou, J, Li, C, Shi, J, Yu, K, Chen, H 2005Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse geneticsVirology341153162PubMedCrossRefGoogle Scholar
  17. Webby, RJ, Perez, DR, Coleman, JS,  et al. 2004Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccinesLancet36310991103PubMedCrossRefGoogle Scholar
  18. Webster, RG, Bean, WJ, Gorman, OT, Chambers, TM, Kawaoka, Y 1992Evolution and ecology of influenza A virusesMicrobiol Rev56152179PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • I. A. Rudneva
    • 1
  • T. A. Timofeeva
    • 1
  • A. A. Shilov
    • 1
  • K. S. Kochergin-Nikitsky
    • 1
  • N. L. Varich
    • 1
  • N. A. Ilyushina
    • 1
  • A. S. Gambaryan
    • 2
  • P. S. Krylov
    • 1
  • N. V. Kaverin
    • 1
  1. 1.The D. I. Ivanovsky Institute of Virology RAMSMoscowRussia
  2. 2.The M. P. Chumakov Institute of Poliomyelitis and Virus Encephalitides RAMSMoscow RegionRussia

Personalised recommendations