Archives of Virology

, Volume 151, Issue 8, pp 1625–1633 | Cite as

Analyses on mutation patterns, detection of population bottlenecks, and suggestion of deleterious-compensatory evolution among members of the genus Potyvirus

  • H. Wang
  • L. F. Huang
  • J. I. Cooper
Brief Report


Viruses of the family Potyviridae exhibited a robust single-nucleotide polymorphism profile at the between-species level, conforming to the neutral theory rule. However, the ratios of nonsynonymous to synonymous mutations (Ka/Ks) were relatively greater between-species than within-species in viral cistrons examined from members of the genus Potyvirus, indicating a relaxation on constraint. Judged by the McDonald and Kreitman’s test, the fixation frequencies for nonsynonymous mutations across the genomes of closely related potyviruses were greater than expected, suggesting population bottlenecks at speciation. These mutation patterns are best explained by a deleterious-compensatory model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, MJ, Antoniw, JF, Fauquet, CM 2005Molecular criteria for genus and species discrimination within the family PotyviridaeArch Virol150459479PubMedCrossRefGoogle Scholar
  2. Burch, CL, Chao, L 2000Evolvability of an RNA virus is determined by its mutational neighbourhoodNature406625628PubMedCrossRefGoogle Scholar
  3. Chao, L 1997Evolution of sex and the molecular clock in RNA virusesGene205301308PubMedCrossRefGoogle Scholar
  4. Desbiez, C, Lecoq, H 2004The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genomeArch Virol14916191632PubMedCrossRefGoogle Scholar
  5. Fraile, A, Escriu, F, Aranda, MA, Malpica, JM, Gibbs, AJ, Garcia-Arenal, F 1997A century of tobamovirus evolution in an Australian population of Nicotiana glaucaJ Virol7183168320PubMedGoogle Scholar
  6. French, R, Stenger, DC 2003Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variationAnnu Rev Phytopathol41199214PubMedCrossRefGoogle Scholar
  7. Garcia-Arenal, F, Fraile, A, Malpica, JM 2003Variation and evolution of plant virus populationsInt Microbiol6225232PubMedCrossRefGoogle Scholar
  8. Harrison, BD 1981Plant virus ecology: ingredients, interactions and environment influencesAnnu Appl Biol99195209CrossRefGoogle Scholar
  9. Hull, R 2002Matthews’ plant virology4Academic PressLondon, San DiegoGoogle Scholar
  10. Kimura, M 1985The role of compensatory neutral mutations in molecular evolutionJ Genet64719CrossRefGoogle Scholar
  11. Koonin, EV 1991The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA virusesJ Gen Virol7221972206PubMedGoogle Scholar
  12. Kulathinal, RJ, Bettencourt, BR, Hartl, DL 2004Compensated deleterious mutations in insect genomesScience30615531554PubMedCrossRefGoogle Scholar
  13. Li, H, Roossinck, MJ 2004Genetic bottlenecks reduce population variation in an experimental RNA virus populationJ Virol781058210587PubMedCrossRefGoogle Scholar
  14. McDonald, JH, Kreitman, M 1991Adaptive protein evolution at the Adh locus in DrosophilaNature351652654PubMedCrossRefGoogle Scholar
  15. Muller, HJ 1964The relation of recombination to mutational advanceMutat Res129Google Scholar
  16. Nei, M, Gojobori, T 1986Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutionsMol Biol Evol3418426PubMedGoogle Scholar
  17. Novella, IS, Ebendick-Corpus, BE 2004Molecular basis of fitness loss and fitness recovery in vesicular stomatitis virusJ Mol Biol34214231430PubMedCrossRefGoogle Scholar
  18. Ohta, T 2002Near-neutrality in evolution of genes and gene regulationProc Natl Acad Sci USA991613416137PubMedCrossRefGoogle Scholar
  19. Pirone, TP, Blanc, S 1996Helper-dependent vector transmission of plant virusesAnnu Rev Phytopathol34227247PubMedCrossRefGoogle Scholar
  20. Raccah, B, Huet, H, Blanc, S 2001


    Harris, KFSmith, OPDuffus, JE eds. Virus-insect-plant interactionsAcademic PressSan Diego
    Google Scholar
  21. Rand, DM, Kann, LM 1996Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humansMol Biol Evol13735748PubMedGoogle Scholar
  22. Sacristan, S, Malpica, JM, Fraile, A, Garcia-Arenal, F 2003Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plantsJ Virol7799069911PubMedCrossRefGoogle Scholar
  23. Shi, YH, Hong, XY, Chen, J, Adams, MJ, Zheng, HY, Lin, L, Qin, BX, Chen, JP 2005Further molecular characterisation of potyviruses infecting aroid plants for medicinal use in ChinaArch Virol150125135PubMedCrossRefGoogle Scholar
  24. Shukla, DD, Ward, CW, Brunt, AA 1994The PotyviridaeCAB InternationalWallingfordGoogle Scholar
  25. Tan, Z, Gibbs, AJ, Tomitaka, Y, Sanchez, F, Ponz, F, Ohshima, K 2005Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativusJ Gen Virol86501510PubMedCrossRefGoogle Scholar
  26. Zhong, Y, Guo, A, Li, C, Zhuang, B, Lai, M, Wei, C, Luo, J, Li, Y 2005Identification of a naturally occurring recombinant isolate of Sugarcane mosaic virus causing maize dwarf mosaic diseaseVirus Genes307583PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Wang
    • 1
  • L. F. Huang
    • 1
  • J. I. Cooper
    • 1
  1. 1.NERC/Centre for Ecology and Hydrology-Oxford*OxfordU.K.

Personalised recommendations