Archives of Virology

, Volume 151, Issue 1, pp 55–69 | Cite as

Biodiversity and recombination of cassava-infecting begomoviruses from southern India

  • D. Rothenstein
  • D. Haible
  • I. Dasgupta
  • N. Dutt
  • B. L. Patil
  • H. Jeske


Cassava mosaic disease (CMD) is caused by various begomoviruses of the family Geminiviridae leading to considerable crop losses in Africa and Asia. Recombination between their genomic components has generated new pathotypes with enhanced virulence in Africa. Here, we report about a survey on the biodiversity of begomoviruses in cassava from southern India (Tamil Nadu and Kerala states) performed in 2001 and 2002. Viral DNA A components from stem cuttings were analysed using polymerase chain reaction and restriction fragment length polymorphism. Eight representative examples were completely sequenced. The majority of DNA sequences (7 of 8) obtained were more closely related to that of Sri Lankan cassava mosaic virus (SLCMV) than of Indian cassava mosaic virus (ICMV). Only one sequence collected in Kerala was related to ICMV. The diversity of the SLCMV-like sequences was rather low compared to the variability of African viruses associated with cassava mosaic disease. Based on DNA A sequence data, all of these isolates should be classified as variants of SLCMV or ICMV. Phylogenetic analysis revealed mosaic structures within the DNA sequences which may indicate footprints of recombination events between ancestors of SLCMV and ICMV.


Polymerase Chain Reaction Phylogenetic Analysis Fragment Length Length Polymorphism Restriction Fragment Length Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberter, B, Rezaian, AM, Jeske, H 2005Replicative intermediates of ToLCV and its satellite DNAs.Virology331441448PubMedCrossRefGoogle Scholar
  2. Arguello-Astorga, GR, Guevara-Gonzalez, RG, Herrera-Estrella, LR, Rivera-Bustamante, RF 1994Geminivirus replication origins have a group-specific organization of iterative elements: A model for replication.Virology20390100PubMedGoogle Scholar
  3. Baliji, S, Black, MC, French, R, Stenger, DC, Sunter, G 2004Spinach curly top virus: A newly described Curtovirus species from southwest texas with incongruent gene phylogenies.Phytopathology94772779Google Scholar
  4. Berrie, LC, Rybicki, EP, Rey, ME 2001Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombination amongst begomoviruses.J Gen Virol825358PubMedGoogle Scholar
  5. Böttcher, B, Unseld, S, Ceulemans, H, Russell, RB, Jeske, H 2004Geminate structures of African cassava mosaic virus.J Virol7867096714Google Scholar
  6. Briddon, RW, Bedford, ID, Tsai, JH, Markham, PG 1996Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin.Virology219387394PubMedCrossRefGoogle Scholar
  7. Briddon RW, Robertson I, Markham PG, Stanley J (2003) Occurence of South African cassava mosaic virus (SACMV) in Zanzibar. New Disease Reports Scholar
  8. Bull SE, Karakacha HW, Briddon RW, Nzioki S, Maruthi MN, Stanley J, Winter S (2003) Occurrence of East African cassava mosaic Zanzibar virus (EACMZV) in costal Kenya. New Dis. Rep. Scholar
  9. Chenna, R, Sugawara, H, Koike, T, Lopez, R, Gibson, TJ, Higgins, DG, Thompson, JD 2003Multiple sequence alignment with the Clustal series of programs.Nucleic Acids Res3134973500PubMedCrossRefGoogle Scholar
  10. Fauquet, CM, Bisaro, DM, Briddon, RW, Brown, JK, Harrison, BD, Rybicki, EP, Stenger, DC, Stanley, J 2003Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species.Arch Virol148405421PubMedCrossRefGoogle Scholar
  11. Fontes, EP, Eagle, PA, Sipe, PS, Luckow, VA, Hanley-Bowdoin, L 1994Interaction between a geminivirus replication protein and origin DNA is essential for viral replication.J Biol Chem26984598465PubMedGoogle Scholar
  12. Fontes, EP, Gladfelter, HJ, Schaffer, RL, Petty, IT, Hanley-Bowdoin, L 1994Geminivirus replication origins have a modular organization.Plant Cell6405416PubMedCrossRefGoogle Scholar
  13. Frischmuth, T, Roberts, S, von Arnim, A, Stanley, J 1993Specificity of bipartite geminivirus movement proteins.Virology196666673PubMedCrossRefGoogle Scholar
  14. Frischmuth, T, Engel, M, Lauster, S, Jeske, H 1997Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted, Sida-infecting bipartite geminiviruses in Central America.J Gen Virol7826752682PubMedGoogle Scholar
  15. Galvao, RM, Mariano, AC, Luz, DF, Alfenas, PF, Andrade, EC, Zerbini, FM, Almeida, MR, Fontes, EP 2003A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically.J Gen Virol84715726PubMedCrossRefGoogle Scholar
  16. Gilbertson, RL, Hidayat, SH, Paplomatas, EJ, Rojas, MR, Hou, YM, Maxwell, DP 1993Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses.J Gen Virol742331PubMedGoogle Scholar
  17. Hanley-Bowdoin, L, Settlage, SB, Orozco, BM, Nagar, S, Robertson, D 1999Geminiviruses: Models for plant DNA replication, transcription, and cell cycle regulation.Crit Rev Plant Sci1871106Google Scholar
  18. Harrison, BD, Swanson, MM, Fargette, D 2002Begomovirus coat protein: serology, variation and function.Physiol Mol Plant Pathol60257271Google Scholar
  19. Höfer, P, Engel, M, Jeske, H, Frischmuth, T 1997Host range limitation of a pseudorecombinant virus produced by two distinct bipartite geminiviruses.Mol Plant-Microbe Interact1010191022Google Scholar
  20. Höhnle, M, Höfer, P, Bedford, ID, Briddon, RW, Markham, PG, Frischmuth, T 2001Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate.Virology290164171PubMedGoogle Scholar
  21. Hou, YM, Gilbertson, RL 1996Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination.J Virol7054305436PubMedGoogle Scholar
  22. Husmeier, D, McGuire, G 2003Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo.Mol Biol Evol20315337PubMedGoogle Scholar
  23. Isnard, M, Granier, M, Frutos, R, Reynaud, B, Peterschmitt, M 1998Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars.J Gen Virol7930913099PubMedGoogle Scholar
  24. Jovel, J, Reski, G, Rothenstein, D, Ringel, M, Frischmuth, T, Jeske, H 2004Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus.Arch Virol149829841PubMedCrossRefGoogle Scholar
  25. Klute, KA, Nadler, SA, Stenger, DC 1996Horseradish curly top virus is a distinct subgroup II geminivirus species with rep and C4 genes derived from a subgroup III ancestor.J Gen Virol7713691378PubMedGoogle Scholar
  26. Lazarowitz, SG 1991Molecular characterization of two bipartite geminiviruses causing squash leaf curl disease: role of viral replication and movement functions in determining host range.Virology1807080PubMedGoogle Scholar
  27. Lazarowitz, SG, Lazdins, IB 1991Infectivity and complete nucleotide sequence of the cloned genomic components of a bipartite squash leaf curl gemini virus with a broad hostrange phenotype.Virology1805869PubMedGoogle Scholar
  28. Lin, B, Akbar Behjatnia, SA, Dry, IB, Randles, JW, Rezaian, MA 2003High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite.Virology305353363PubMedCrossRefGoogle Scholar
  29. Martin, DP, Willment, JA, Billharz, R, Velders, R, Odhiambo, B, Njuguna, J, James, D, Rybicki, EP 2001Sequence diversity and virulence in Zea mays of Maize streak virus isolates.Virology288247255PubMedCrossRefGoogle Scholar
  30. Maruthi, MN, Colvin, J, Seal, S, Gibson, G, Cooper, J 2002Co-adaptation between cassava mosaic geminiviruses and their local vector populations.Virus Res867185PubMedCrossRefGoogle Scholar
  31. Milne, I, Wright, F, Rowe, G, Marshall, DF, Husmeier, D, McGuire, G 2004TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments.Bioinformatics2018061807PubMedCrossRefGoogle Scholar
  32. Morilla, G, Krenz, B, Jeske, H, Bejarano, ER, Wege, C 2004Tête à tête of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in single nuclei.J Virol781071510723PubMedCrossRefGoogle Scholar
  33. Noris, E, Vaira, AM, Caciagli, P, Masenga, V, Gronenborn, B, Accotto, GP 1998Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission.J Virol721005010057PubMedGoogle Scholar
  34. Orozco, BM, Gladfelter, HJ, Settlage, SB, Eagle, PA, Gentry, RN, Hanley-Bowdoin, L 1998Multiple cis elements contribute to geminivirus origin function.Virology242346356PubMedCrossRefGoogle Scholar
  35. Padidam, M, Sawyer, S, Fauquet, CM 1999Possible emergence of new geminiviruses by frequent recombination.Virology285218225Google Scholar
  36. Patil, BL, Rajasubramaniam, S, Bagchi, C, Dasgupta, I 2005Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP.Arch Virol150389397PubMedCrossRefGoogle Scholar
  37. Polston, JE, Anderson, PK 1997The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere.Plant Dis8113581369Google Scholar
  38. Roberts, S, Stanley, J 1994Lethal mutations within the conserved stem-loop of African cassava mosaic virus DNA are rapidly corrected by genomic recombination.J Gen Virol7532033209PubMedCrossRefGoogle Scholar
  39. Rogers, SO, Bendich, AJ 1985Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues.Plant Mol Biol56976CrossRefGoogle Scholar
  40. Rothenstein, D, Briddon, RW, Haible, D, Stanley, J, Frischmuth, T, Jeske, H 2005Biolistic infection of cassava using cloned components of Indian cassava mosaic virus.Arch Virol15016691675PubMedCrossRefGoogle Scholar
  41. Saeed, M, Behjatnia, SAA, Mansoor, S, Zafar, Y, Hasnain, S, Rezaian, MA 2005A geminiviral DNA beta satellite modulates pathogenesis by a single complementary-sense transcript.Mol Plant-Microbe Interact18714PubMedGoogle Scholar
  42. Saunders, K, Salim, N, Mali, VR, Malathi, VG, Briddon, R, Markham, PG, Stanley, J 2002Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus.Virology2936374PubMedCrossRefGoogle Scholar
  43. Stanley, J, Townsend, R, Curson, SJ 1985Pseudorecombinants between cloned DNAs of two isolates of cassava latent virus.J Gen Virol6610551061Google Scholar
  44. Stanley, J, Markham, PG, Callis, RJ, Pinner, MS 1986The nucleotide sequence of an infectious clone of the geminivirus beet curly top virus.EMBO J517611767PubMedGoogle Scholar
  45. Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Ball LA (ed) Virus Taxonomy. VIIIth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, pp 301–326Google Scholar
  46. Sung, YK, Coutts, RH 1995Pseudorecombination and complementation between po- tato yellow mosaic geminivirus and tomato golden mosaic geminivirus.J Gen Virol7628092815PubMedGoogle Scholar
  47. Unseld, S, Ringel, M, Höfer, P, Höhnle, M, Jeske, H, Bedford, ID, Markham, PG, Frischmuth, T 2000Host range and symptom variation of pseudorecombinant virus produced by two distinct bipartite geminiviruses.Arch Virol14514491454PubMedCrossRefGoogle Scholar
  48. Unseld, S, Ringel, M, Konrad, A, Lauster, S, Frischmuth, T 2000Virus-specific adaptations for the production of a pseudorecombinant virus formed by two distinct bipartite geminiviruses from Central America.Virology274179188PubMedCrossRefGoogle Scholar
  49. von Arnim, A, Stanley, J 1992Inhibition of African cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus.Virology187555564PubMedCrossRefGoogle Scholar
  50. von Arnim, A, Stanley, J 1992Determinants of tomato golden mosaic virus symptom development located on DNA B.Virology186286293PubMedCrossRefGoogle Scholar
  51. Willment, JA, Martin, DP, Rybicki, EP 2001Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data.J Virol Methods937587PubMedCrossRefGoogle Scholar
  52. Zhang, W, Olson, NH, Baker, TS, Faulkner, L, Agbandje-McKenna, M, Boulton, M, Davies, JW, McKenna, R 2001Structure of the maize streak virus geminate particle.Virology279471477PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • D. Rothenstein
    • 1
  • D. Haible
    • 1
  • I. Dasgupta
    • 2
  • N. Dutt
    • 2
  • B. L. Patil
    • 2
  • H. Jeske
    • 1
  1. 1.Department of Molecular Biology and Plant VirologyUniversity of StuttgartStuttgartGermany
  2. 2.Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations