Archives of Virology

, Volume 150, Issue 12, pp 2439–2452 | Cite as

Molecular epidemiology of African swine fever in East Africa

  • B. A. Lubisi
  • A. D. S. Bastos
  • R. M. Dwarka
  • W. Vosloo


African swine fever (ASF) a lethal, viral hemorrhagic disease of domestic pigs, first reported from East Africa in 1921, is still widespread in this region. In order to assess field heterogeneity at the regional level, nucleotide sequences corresponding to the C-terminal end of the p72 gene were determined for 77 ASF viruses of diverse temporal and species origin occurring in eight East African countries. The number of sites completely conserved across all East African sequences characterized in this study was 84.2% and 86.8% on nucleotide and amino acid level, respectively. Phylogenetic analysis of a homologous 404 bp region revealed the presence of thirteen East African genotypes, of which eight appear to be country specific. An East African, pig-associated, homogeneous virus lineage linked to outbreaks in Mozambique, Zambia and Malawi over a 23 year period was demonstrated. In addition, genotype I (ESACWA) viruses were identified in East African sylvatic hosts for the first time which is significant as this genotype was previously thought to be restricted to the West African region where it occurs only in domestic pigs. The presence of discrete epidemiological cycles in East Africa and recovery of multiple genotypes affirms the epidemiological complexity of ASF in this region.


Amino Acid Level Molecular Epidemiology African Region Species Origin African Swine Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastos, ADS, Penrith, M-L, Crucière, C, Edrich, JL, Hutchings, G, Roger, F, Couacy-Hymann, E, Thomson, GR 2003Genotyping field strains of African swine fever virus by partial p72 gene characterization.Arch Virol148693706CrossRefPubMedGoogle Scholar
  2. Bastos, ADS, Penrith, M-L, Macome, F, Pinto, F, Thomson, GR 2004Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no evidence for individual co-infection.Vet Microbiol103169182CrossRefPubMedGoogle Scholar
  3. Boom, R, Sol, CJ, Salimans, MMM, Jansen, CL, Wertheim-Van Dillen, PME, Van Der Noordaa, J 1990Rapid and simple method for purification of nucleic acids.J Clin Microbiol28495503PubMedGoogle Scholar
  4. Boinas, FS, Hutchings, GH, Dixon, LK, Wilkinson, PJ 2004Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal.J Gen Virol8521772187CrossRefPubMedGoogle Scholar
  5. Boshoff CI, Bastos ADS, Gerber L, Vosloo W (2004) Determination of the origin and spread of African swine fever outbreaks in southern Africa by genetic characterization of the virus (in prep)Google Scholar
  6. Dixon LK, Costa JV, Escribano JM, Rock DL, Viñuela E, Wilkinson PJ (2000) Family Asfarviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carestens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RBFA, Murphy CM, Fauquet DHL, Bishop SA, Ghabrial AW, Javis GP, Martelli MD (eds) Virus taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. Summers Academic Press, San Diego, pp 159–165Google Scholar
  7. Dixon, L, Wilkinson, PJ 1988Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia.J Gen Virol6929812993PubMedGoogle Scholar
  8. Donaldson, AI, Ferris, NP 1976The survival of some airborne animal viruses in relation to relative humidity.Vet Microbiol1413420CrossRefGoogle Scholar
  9. Gonzague, M, Roger, F, Bastos, A, Burger, C, Randriamparany, T, Smondack, S, Cruciere, C 2001Isolation of a non-haemadsorbing, non-cytopathic strain of African swine fever virus in Madagascar.Epidemiol Infect126453459CrossRefPubMedGoogle Scholar
  10. Groocock, CM, Hess, WR, Gladney, WJ 1980Experimental transmission of African swine fever virus by Ornithodoros coriaceus, an argasid tick indigenous to the United States.Am J Vet Res41591594PubMedGoogle Scholar
  11. Haresnape, JM 1984African swine fever in Malawi.Trop Anim Health Prod16123125CrossRefPubMedGoogle Scholar
  12. Harley EH (1994) DAPSA. DNA and protein sequence analysis, version 2.9. Department of Chemical Pathology, University of Cape Town, South AfricaGoogle Scholar
  13. Hasegawa, M, Kishino, H, Yano, T 1985Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.J Mol Evol22160174PubMedGoogle Scholar
  14. Hays, SM 1996African swine fever poses risk to U.S. hogs.Agricult Res441417Google Scholar
  15. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA 2. Molecular Evolutionary Genetics Analysis software, version 2.0 Pennyslavia State University, USAGoogle Scholar
  16. Lopez-Otin, C, Freije, JM, Parra, F, Mendez, E, Vinuela, E 1990Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus.Virology175477484PubMedGoogle Scholar
  17. Malmquist, WA, Hay, D 1960Haemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures.Am J Vet Res21104108PubMedGoogle Scholar
  18. Manso Ribeiro, J, Rosa Azevedo, JA, Texeira, MJO, Braco Forte, MC, Rodrigues Ribeiro, AM, Oliveira, E, Noronha, F, Grave Perreira, C, Dias Viagrio, J 1958An atypical strain of swine fever virus in Portugal / Peste porcine africaine provoquée par une souche different (Souche L) de la souche classique.Bull Off Int Epiz50516534Google Scholar
  19. Montgomery, RE 1921On a form of swine fever occurring in British East Africa (Kenya Colony).J Comp Pathol34159191Google Scholar
  20. Neilan, JG, Zsak, L, Lu, Z, Burrage, TG, Kutish, GF, Rock, DL 2004Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection.Virology319337342CrossRefPubMedGoogle Scholar
  21. Odemuyiwa, SO, Adebayo, IA, Ammerlaan, W, Ajuwape, AT, Alaka, OO, Oyedele, OI, Soyelu, KO, Olaleye, DO, Otesile, EB, Muller, CP 2000An outbreak of African swine fever in Nigeria: virus isolation and molecular characterization of the VP72 gene of a first isolate from West Africa.Virus Genes20139142CrossRefPubMedGoogle Scholar
  22. Penrith ML, Thomson GR, Bastos ADS (2005) African swine fever. In: Coetzer JAW, Tustin RC (eds) Infectious diseases of Livestock. Oxford University Press, Southern Africa, pp 1087–1119Google Scholar
  23. Pini, A, Hurter, LR 1975African Swine Fever: An epizootiological review with special reference to the South African situation.J S Afr Vet Med Assoc46227232Google Scholar
  24. Plowright, W, Parker, J 1967The stability of African swine fever virus with particular reference to heat and pH inactivation.Arch Ges Virusforsch21383402CrossRefPubMedGoogle Scholar
  25. Plowright, W, Parker, J, Pierce, MA 1969The epizootiology of African swine fever in Africa.Vet Rec85668674PubMedGoogle Scholar
  26. Posada, D, Crandall, KA 1998MODELTEST: testing the model of DNA substitution.BioInformatics14817818CrossRefPubMedGoogle Scholar
  27. Swofford DL (1998) PAUP: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland, MassGoogle Scholar
  28. Sumption, KN, Hutchings, GH, Wilkinson, PL, Dixon, LK 1990Variable regions on the genome of Malawi isolates of African swine fever virus.J Gen Virol7123312340PubMedCrossRefGoogle Scholar
  29. Tamura, K, Nei, M 1993Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Mol Biol Evol10512526PubMedGoogle Scholar
  30. Thomson, GR 1985The epidemiology of African swine fever: the role of free-living hosts in Africa.Onderstepoort J Vet Res52201209PubMedGoogle Scholar
  31. Tulman, ER, Rock, DL 2001Novel virulence and host range genes of African swine fever virus.Curr Opin Microbiol4456461CrossRefPubMedGoogle Scholar
  32. Yu, M, Morrisy, CJ, Westbury, HA 1996Strong sequence conservation of African swine fever virus p72 protein provides the molecular basis for its antigenic stability.Arch Virol14117951802CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • B. A. Lubisi
    • 1
    • 2
  • A. D. S. Bastos
    • 2
  • R. M. Dwarka
    • 1
  • W. Vosloo
    • 1
    • 3
  1. 1.Exotic Diseases DivisionARC-Onderstepoort Veterinary InstituteOnderstepoortSouth Africa
  2. 2.Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Veterinary Tropical DiseasesUniversity of PretoriaOnderstepoortSouth Africa

Personalised recommendations