Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Climate change in northern Patagonia: critical decrease in water resources

Abstract

The current study presents an assessment of the impact of climate change on water yield, one of the main hydrological ecosystem services, in northern Patagonia. The outputs of regional climate models from the CORDEX Project for South America were used to drive the InVEST water yield model. CORDEX regional climate models project for the far future (2071–2100) an increase in temperature higher than 1.5 °C and a precipitation decrease ranging from − 10 to − 30% for the study area. The projected warmer and dryer climate emerges as a robust signal based on model agreement and on consistent physical drivers of these changes. Moreover, both the projected increase in evapotranspiration and the decrease in precipitation contribute to a strong decrease in water yield of around − 20 to − 40% in the headwaters of northern Patagonian watersheds. Comparison of the results in the two basins reveals that the land cover may be considered a buffer of water yield changes and highlights the key role of protected areas in reducing the vulnerability of water resources to climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration, irrigation and drainage 56. FAO, Rome

  2. Bangash RF, Passuello A, Canales MS, Terrado M, López A, Elorza FJ, Ziv G, Acuña V, Schuhmacher M (2013) Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458–460:246–255. https://doi.org/10.1016/j.scitotenv.2013.04.025

  3. Barros, V., Vera, C, (coordinators) and collaborators, Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2014) Tercera Comunicación Nacional sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones (CIMA), Buenos Aires

  4. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical Paper VIIPCC, Geneva, 210 pp

  5. Blázquez J, Nuñez M, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos Clim Sci 2:381–400

  6. Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent mega drought in Central Chile. Geophys Res Lett 43. https://doi.org/10.1002/2015GL067265

  7. Boithias L, Acuña V, Vergoñós L, Ziv G, Marcé R, Sabater S (2014) Assessment of the water supply: demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Sci Total Environ 470–471:567–577. https://doi.org/10.1016/j.scitotenv.2013.10.003

  8. Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

  9. Budyko, M.I. (1974) Climate and life. Academic, San Diego, CA, USA, pp. 321–330 (translated from Russian by: miller, D. H)

  10. Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108(4):583–595

  11. Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21(3):303–317

  12. Commendatore M, Esteves JL (2004) Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull 48(9–10):910–918

  13. Donohue RJ, Roderick ML, McVicar TR (2012) Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko’s hydrological model. J Hydrol 436-437:35–50

  14. Faramarzi M, Abbaspour KC, Vaghefi SA, Farzaneh M, Zehnder AJB, Srinivasan R, Yang H (2013) Modeling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101. https://doi.org/10.1016/j.jhydrol.2012.12.016

  15. Fernández J et al (2011) Coordinated regional climate downscaling using WRF: a contribution to the CORDEX initiative by the Spanish WRF community (CORWES). International conference on the coordinated regional climate downscaling experiment. Trieste, Bari

  16. Flaherty S, Pessacg N, Brandizi L, Pascual M (2017) Water yield in Patagonia basins: sensitivity analysis to different land use/land cover databases (in Spanish: Producción de aguaencuencaspatagónicas: Análisis de sensibilidad a distintas bases de uso/cobertura de suelo). I Jornada Patagónica del Agua, Trelew

  17. Fundación e Instituto Torcuato Di Tella (2006) Comunicación Nacional de Cambio Climático: Vulnerabilidad de la Patagonia y sur de las provincias de Buenos Aires y La Pampa. Informe Final

  18. García Asorey, M., Flaherty, S., Liberoff, A., Aigo, J.; Pascual, M. (2015) Validación del Uso de la Red Social “flickr” para la caracterización del Turismo y Recreación en Patagonia. IV Congreso Internacional de Servicios Ecosistémicos en los Neotrópicos: de la investigación a la acción. 30 de septiembre al 3 de octubre 2015. Mar del Plata, Argentina

  19. Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9

  20. Garreaud, R., P. Lopez, M. Minvielle y M. Rojas (2013) Large-scale control on the Patagonian climate. J Clim, 26(1), 215–230

  21. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

  22. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Giuliani G (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

  23. Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical Bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol 12(4):556–578

  24. Hawkins E, Sutton RT (2011) The potential to narrow uncertainty in projections of regional precipitation change. ClimDyn 37:407–418. https://doi.org/10.1007/s00382-010-0810-6

  25. Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130(3375):572

  26. Hoyer R, Chang H (2014) Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl Geogr 53:402–416. https://doi.org/10.1016/j.apgeog.2014.06.023

  27. Insel N, Poulsen C, Ehlers T (2009) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn. https://doi.org/10.1007/s00382-009-0637-1

  28. Jacob D, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Koepken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass HB, Smith RND, Van den Hurk BJJM, Yang X (2001) A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorog Atmos Phys 77(1–4):19–43

  29. Jones, C., Giorgi F.,Asrar G. (2011) The coordinated regional downscaling experiment: CORDEX, An international downscaling link to CMIP5: CLIVAR Exchanges, No. 56, Vol 16, No.2 pages 34–40. Available from http://www.clivar.org/sites/default/files/imported/publications/exchanges/Exchanges_56.pdf

  30. Kaless G, Pascual M, Flaherty S, Liberoff A, García-Asorey M, Brandizi L, Pessacg N, 2019: Ecos de la tormenta de Comodoro Rivadavia en el Valle Inferior del Río Chubut. Aporte de sedimentos al Río Chubut desde la cuenca del Río Chico. Chapter 22 in COMODORO RIVADAVIA Y LA CATÁSTROFE DE 2017. Visiones múltiples para una ciudad en riesgo, UNPSJB

  31. Li H, Xu C-Y, Beldring S, Tallaksen LM, Jain SK (2016) Water resources under climate change in Himalayan basins. Water Resour Manag 30(2):843–859. https://doi.org/10.1007/s11269-015-1194-5

  32. Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Chang 125(1):111–125

  33. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S, Richter I, Soares PMM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Chang 7(11):764–773

  34. Marquès M, Bangash RF, Kumar V, Sharp R, Schuhmacher M (2013) The impact of climate change on water provision under a low flow regime: a case study of the ecosystems services in the Francoli river basin. J Hazard Mater 263:224–232

  35. Martínez, S. (2002) Cuenca del río Limay. Cuenca N° 63. Atlas digital de los recursos hídricos superficiales de la República Argentina (www.hidricosargentina.gov.ar)

  36. Masiokas M et al (2008) 20th-century glaciar recession and regional hydroclimatic changes in the northwestern Patagonia. Glob Planet Chang 60:85–100

  37. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JF, Stouffer RJ, y Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Amer Meteor Soc 88:1383–1394

  38. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. https://doi.org/10.1002/joc.1181

  39. Moyano CH, Moyano MC (2013) Hydrological study in the Chubut River. High and mean basin (in Spanish: Estudio Hidrológico del Río Chubut. Cuenca superior y media). Contribuciones Científicas GÆA 25:149–164

  40. Olsson J, Yang W, Bosshard T (2013) Climate model precipitations in hydrological impact studies: limitations and possibilities. J. Water Management and Research 69:221–230

  41. Pasquini A, Depetris P (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

  42. Pessacg, N., Flaherty, S., Brandizi, L., Solman, S. y Pascual, M. (2015) Getting water right: a case study in water yield modelling based on precipitation data. Sci Total Environ 537, 225–234

  43. Pessacg N, Flaherty S, Brandizi L, Rechencq M, García Asorey M, Castiñeira L, Solman S, Pascual M (2018) Water yield in the Limay River basin: modelling and calibration (in Spanish: Producción de agua en la Cuenca del Río Limay: Modelado y Calibración). Meteorológica J 43(2):3–23

  44. Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39(20)

  45. Power S, Delage F, Colman R, Moise A (2011) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809

  46. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafai P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

  47. Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in Southern South America. Int J Climatol 17:67–85

  48. Sanchez E, Solman S, Remedio ARC, Berbery H, Samuelsson P, da Rocha RP, Mourao C, Li L, Marengo J, de Castro M, Jacob D (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212

  49. Saurral RI, Montroull NB, Camilloni IA (2013) Development of statistically unbiased twenty-first century hydrology scenarios over La Plata Basin. International Journal of River Basin Management 11(4):329–343

  50. Scott PA, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. WIREs Clim Change 7:23–41. https://doi.org/10.1002/wcc.380

  51. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A.L., Rogers, L., and Bierbower, W. (2016) InVEST 3.2.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

  52. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN-475+STR. Mesoscale and microscale meteorology division, National Center for Atmospheric Research, Boulder

  53. Solman S (2013) Regional climate modeling over South America: a review. Adv Meteorol:504357. https://doi.org/10.1155/2013/504357

  54. Solman S (2016) Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate change projections. Clim Res 68:117–136

  55. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V (2013) Midg-ley PM (Eds). IPCC. Climate change (2013) the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

  56. Strandberg, G., Bärring, L, Hansson, U., Jansson, C., Jones, C., Kjellström, E., Kolax, M., Kupiainen, M., Nikulin, G., et al (2014) CORDEX Scenarios for Europe from the Rossby Centre Regional Climate Model RCA4. https://www.smhi.se/polopoly_fs/1.90273!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RMK_116.pdf

  57. Su C, Bojie F (2013) Evolution of ecosystem services in the Chinese loess plateau under climatic and land use changes. Glob Planet Chang 101:119–128

  58. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456-457:12–29

  59. Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P, Moseley C, Pfeifer S, Rechid D, Remedio A, Ries H, Petersen J, Preuschmann S, Raub T, Saeed F, Sieck K, Weber T (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: a study over different CORDEX regions using REMO. Atmosphere 4(2):214–236

  60. Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. https://doi.org/10.1002/joc.2168

  61. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. https://doi.org/10.1007/s10584-011-0151-4

  62. Tramblay D, Ruelland S, Somot RB, Servat E (2013) High-resolution med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-climate model in Morocco Y. Hydrol Earth Syst Sci 17:3721–3739

  63. Trisurat Y, Eawpanich P, Kalliola R (2016) Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environ Res 147:611–620

  64. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

  65. Vich, A.I.J., Norte, F.A. y Lauro, C. (2014) Análisis regional de frecuencias de caudales de ríos pertenecientes a cuencas con nacientes en la Cordillera de los Andes. Meteorológica, 39(1):3–26

  66. Vidal J-P, Wade S (2008a) A framework for developing high-resolution multi-model climate projections: 21st century scenarios for the UK. Int J Climatol 28(7):843–858

  67. Vidal J-P, Wade SD (2008b) Multimodel projections of catchment-scale precipitation regime. J Hydrol 353(1–2):143–158

  68. Vidal J-P, Wade S (2009) A multimodel assessment of future climatological droughts in the United Kingdom. Int J Climatol 29(14):2056–2071

  69. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Chang 59:177–232

  70. Vincent L, Peterson T, Barros V (2005) Observed trends in indices of daily temperature extremes in South America 1960-2000. J Clim 18:5011–5023

  71. Wood AW (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107(D20)

  72. Yira Y, Diekkrüger B, Steup G, Bossa AY (2017) Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrol Earth Syst Sci 2017(21):2143–2161

Download references

Acknowledgements

Thanks go to the CORDEX Project and partner institutions for making climate data available and to Dr. Jesus Fernandez and Dra. Rosmeri Porfirio da Rocha for providing WRF and RegCM4 outputs for South America, respectively.

Funding

This research was funded by FONCYT Grants PICT 2014–1890 and by the Network for the Conservation of Patagonian River Ecosystems (CONICET and The Nature Conservancy) (Resolution 3213/2).This research is framed also within the P-UE CONICET N° 22,920,160,100,044.

Author information

Correspondence to Pessacg Natalia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Natalia, P., Silvia, F., Silvina, S. et al. Climate change in northern Patagonia: critical decrease in water resources. Theor Appl Climatol (2020). https://doi.org/10.1007/s00704-020-03104-8

Download citation

Keywords

  • Climate change
  • Water yield impact
  • Patagonian basins
  • CORDEX models
  • InVEST model