Advertisement

Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling

  • Shoupeng Zhu
  • Armelle Reca C. Remedio
  • Dmitry V. Sein
  • Frank Sielmann
  • Fei Ge
  • Jingwei Xu
  • Ting Peng
  • Daniela Jacob
  • Klaus Fraedrich
  • Xiefei ZhiEmail author
Original Paper

Abstract

The performance of the regional atmosphere-ocean coupled model ROM (REMO-OASIS-MPIOM) is compared with its atmospheric component REMO in simulating the East Asian summer monsoon (EASM) during the time period 1980–2012 with the following results being obtained. (1) The REMO model in the standalone configuration with the prescribed sea surface conditions produces stronger low-level westerlies associated with the South Asian summer monsoon, an eastward shift of the western Pacific subtropical high (WPSH) and a wetter lower troposphere, which jointly lead to moisture pathways characterized by stronger westerlies with convergence eastward to the western North Pacific (WNP). As a consequence, the simulated precipitation in REMO is stronger over the ocean and weaker over the East Asian continent than in the observational datasets. (2) Compared with the REMO results, lower sea surface temperatures (SSTs) feature the ROM simulation with enhanced air-sea exchanges from the intensified low-level winds over the subtropical WNP, generating an anomalous low-level anticyclone and hence improving simulations of the low-level westerlies and WPSH. With lower SSTs, ROM produces less evaporation over the ocean, inducing a drier lower troposphere. As a result, the precipitation simulated by ROM is improved over the East Asian continent but with dry biases over the WNP. (3) Both models perform fairly well for the upper level circulation. In general, compared with the standalone REMO model, ROM improves simulations of the circulation associated with the moisture transport in the lower- to mid-troposphere and reproduces the observed EASM characteristics, demonstrating the advantages of the regionally coupled model ROM in regions where air-sea interactions are highly relevant for the East Asian climate.

Notes

Acknowledgments

The anonymous reviewers are thanked for their constructive comments, which greatly improved this paper. We also thank Dr. Xiuhua Zhu and Dr. Torsten Weber for their extensive advices. We are grateful to ECMWF, NASA, and NOAA for access to their data products. The study was realized through access to the computing resources from the German Climate Computing Center (DKRZ).

Funding information

The authors acknowledge the joint financial support of the National Key R&D Program of China (Grant No. 2017YFC1502002), the National Natural Science Foundation of China (Grant Nos 41575104 and 41805056), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0875), the Scientific Research Foundation of CUIT (KYTZ201730), the Project Supported by Scientific Research Fund of Sichuan Provincial Education Department (18ZB0112), the Open Research Fund Program of KLME, NUIST (KLME201809), the PRIMAVERA project funded by the European Union’s Horizon 2020 program (Grant Agreement No. 641727), the state assignment of FASO Russia (Theme Nos 0149-2018-0014 and 0149-2019-0015), and the China Scholarship Council (Nos 201608320193 and 201808510009).

References

  1. Adler RF, Huffman GJ, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4: 1147–1167.  https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2CrossRefGoogle Scholar
  2. Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 100:487–490CrossRefGoogle Scholar
  3. Cabos W, Sein DV, Pinto JG, Fink AH, Koldunov NV, Alvarez F, Izquierdo A, Keenlyside N, Jacob D (2017) The South Atlantic anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Clim Dyn 48:4051–4069.  https://doi.org/10.1007/s00382-016-3319-9 CrossRefGoogle Scholar
  4. Cai D, You Q, Fraedrich K et al (2017) Spatiotemporal temperature variability over the Tibetan Plateau: altitudinal dependence associated with the global warming hiatus. J Clim 30:969–984.  https://doi.org/10.1175/JCLI-D-16-0343.1 CrossRefGoogle Scholar
  5. Cha D, Jin C, Moon J et al (2016) Improvement of regional climate simulation of East Asian summer monsoon by coupled air-sea interaction and large-scale nudging. Int J Climatol 36:334–345.  https://doi.org/10.1002/joc.4349 CrossRefGoogle Scholar
  6. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  7. Fan Y, Fan K, Xu Z et al (2018) ENSO-South China Sea summer monsoon interaction modulated by the Atlantic Multidecadal Oscillation J Climate 31:3061–3076Google Scholar
  8. Fan Y, Fan K, Zhu X et al (2019) El Niño-related summer precipitation anomalies in Southeast Asia modulated by the Atlantic Multidecadal Oscillation J Climate 32:7971–7987Google Scholar
  9. Ge F, Zhi X, Babar ZA et al (2017) Interannual variability of summer monsoon precipitation over the Indochina Peninsula in association with ENSO. Theor Appl Climatol 128:523–531CrossRefGoogle Scholar
  10. Ge F, Zhu S, Peng T, et al. 2019. Risks of precipitation extremes over Southeast Asia: does 1.5°C or 2°C global warming make a difference? Environ. Res. Lett.14: 044015CrossRefGoogle Scholar
  11. Gelaro R, McCarty W, Suárez MJ et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454.  https://doi.org/10.1175/JCLI-D-16-0758.1 CrossRefGoogle Scholar
  12. Gent PR, Willebrand J, McDougall TJ, et al. 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25: 463–474.  https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2CrossRefGoogle Scholar
  13. Griffies SM. 1998. The Gent-McWilliams skew flux. J Phys Oceanogr 28: 831–841.  https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2CrossRefGoogle Scholar
  14. Hagemann S, Dümenil L (1997) A parametrization of the lateral waterflow for the global scale. Clim Dyn 14:17–31.  https://doi.org/10.1007/s003820050205 CrossRefGoogle Scholar
  15. Hagemann S, Gates LD (2001) Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J Geophys Res 106:1503–1510.  https://doi.org/10.1029/2000JD900568 CrossRefGoogle Scholar
  16. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorog Atmos Phys 77:61–73.  https://doi.org/10.1007/s007030170017 CrossRefGoogle Scholar
  17. Jacob D, Elizalde A, Haensler A et al (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere. 3:181–199.  https://doi.org/10.3390/atmos3010181 CrossRefGoogle Scholar
  18. Jacob D, Van den Hurk B, Andrae U et al (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorog Atmos Phys 77:19–43.  https://doi.org/10.1007/s007030170015 CrossRefGoogle Scholar
  19. Jungclaus JH, Fischer N, Haak H et al (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446.  https://doi.org/10.1002/jame.20023 CrossRefGoogle Scholar
  20. Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643.  https://doi.org/10.1175/bams-83-11-1631 CrossRefGoogle Scholar
  21. Kumar P, Kotlarski S, Moseley C et al (2015) Response of Karakoram-Himalayan glaciers to climate variability and climatic change: a regional climate model assessment. Geophys Res Lett 42:1818–1825.  https://doi.org/10.1002/2015GL063392 CrossRefGoogle Scholar
  22. Kumar P, Podzun R, Hagemann S et al (2014) Impact of modified soil thermal characteristic on the simulated monsoon climate over South Asia. J Earth Syst Sci 123:151–160.  https://doi.org/10.1007/s12040-013-0381-0 CrossRefGoogle Scholar
  23. Lee DK, Suh MS (2000) Ten-year east Asian summer monsoon simulation using a regional climate model (RegCM2). J Geophys Res 105:29565–29577.  https://doi.org/10.1029/2000JD900438 CrossRefGoogle Scholar
  24. Lin R, Zheng F, Dong X (2019) The climatology and interannual variability of the East Asian summer monsoon simulated by a weakly coupled data assimilation system. Atmospheric and Oceanic Science Letters 12:140–146CrossRefGoogle Scholar
  25. Liu B, Wu G, Mao J et al (2013) Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J Clim 26:2976–2991.  https://doi.org/10.1175/JCLI-D-12-00286.1 CrossRefGoogle Scholar
  26. Lucas-Picher P, Christensen JH, Saeed F et al (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868.  https://doi.org/10.1175/2011jhm1327.1 CrossRefGoogle Scholar
  27. Ludwig P, Pinto JG, Raible CC et al (2017) Impacts of surface boundary conditions on regional climate model simulations of European climate during the last glacial maximum. Geophys Res Lett 44:5086–5095.  https://doi.org/10.1002/2017GL073622 CrossRefGoogle Scholar
  28. Majewski D. 1991. The EUROPA-model of the Deutscher Wetterdienst. Proc. Seminar on Numerical Methods in Atmospheric Models. Reading, United Kingdom, ECMWF, 147–191Google Scholar
  29. Marsland SJ, Haak H, Jungclaus JH, et al. 2003. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5: 91–127.  https://doi.org/10.1016/S1463-5003(02)00015-XCrossRefGoogle Scholar
  30. Ngo-Duc T, Tangang FT, Santisirisomboon J et al (2017) Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX - Southeast Asia region. Int J Climatol 37:1634–1647.  https://doi.org/10.1002/joc.4803 CrossRefGoogle Scholar
  31. Niederdrenk AL, Sein DV, Mikolajewicz U (2016) Interannual variability of the Arctic freshwater cycle in the second half of the twentieth century in a regionally coupled climate model. Clim Dyn 47:3883–3900.  https://doi.org/10.1007/s00382-016-3047-1 CrossRefGoogle Scholar
  32. Ninomiya K (1999) Moisture balance over China and the South China Sea during the summer monsoon in 1991 in relation to the intense rainfalls over China. J Meteor Soc Japan 77:737–751.  https://doi.org/10.2151/jmsj1965.77.3_737 CrossRefGoogle Scholar
  33. Paeth H, Born K, Girmes R et al (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22:114–132.  https://doi.org/10.1175/2008jcli2390.1 CrossRefGoogle Scholar
  34. Paeth H, Müller M, Mannig B (2015) Global versus local effects on climate change in Asia. Clim Dyn 45:2151–2164.  https://doi.org/10.1007/s00382-014-2463-3 CrossRefGoogle Scholar
  35. Pinto JG, Gomara I, Masato G et al (2014) Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe. J Geophys Res 119:13704–13719.  https://doi.org/10.1002/2014JD022305 CrossRefGoogle Scholar
  36. Roeckner E, Arpe K, Bengtsson L, et al. 1996. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day-climate. Rep. 218. MPI für Meteorol. Hamburg, GermanyGoogle Scholar
  37. Roeckner E, Baeuml G, Bonaventura L, et al. 2003. The atmospheric general circulation model ECHAM 5. PART I: model description. Rep. 349. MPI für Meteorol. Hamburg, GermanyGoogle Scholar
  38. Sein DV, Koldunov NV, Pinto JG et al (2014) Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus A.  https://doi.org/10.3402/tellusa.v66.23966 CrossRefGoogle Scholar
  39. Sein DV, Mikolajewicz U, Gröger M et al (2015) Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. J Adv Model Earth Syst 7:268–304.  https://doi.org/10.1002/2014MS000357 CrossRefGoogle Scholar
  40. Simmons AJ, Burridge DM (1981) An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Weather Rev 109:758–766CrossRefGoogle Scholar
  41. Singh UK, Singh GP, Singh V (2015) Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability. Theor Appl Climatol 120:109–122.  https://doi.org/10.1007/s00704-014-1155-6 CrossRefGoogle Scholar
  42. Solman SA, Sanchez E, Samuelsson P et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157.  https://doi.org/10.1007/s00382-013-1667-2 CrossRefGoogle Scholar
  43. Song F, Zhou T (2014) The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: does air-sea coupling improve the simulations? J Clim 27:8761–8777.  https://doi.org/10.1175/JCLI-D-14-00396.1 CrossRefGoogle Scholar
  44. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  45. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012.  https://doi.org/10.1256/qj.04.176 CrossRefGoogle Scholar
  46. Valcke S, Caubel A, Declat D et al (2003) Oasis3 ocean atmosphere sea ice soil user’s guide. CERFACS, ToulouseGoogle Scholar
  47. Vondou DA, Haensler A (2017) Evaluation of simulations with the regional climate model REMO over Central Africa and the effect of increased spatial resolution. Int J Climatol 37:741–760.  https://doi.org/10.1002/joc.5035 CrossRefGoogle Scholar
  48. Wang B, Ding Q, Fu X et al (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711.  https://doi.org/10.1029/2005GL022734 CrossRefGoogle Scholar
  49. Wang B, Fan Z. 1999. Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80: 629–638.  https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2CrossRefGoogle Scholar
  50. Wang D, Liu Q, Huang RX et al (2006) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605.  https://doi.org/10.1029/2006GL026316 CrossRefGoogle Scholar
  51. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926.  https://doi.org/10.1002/qj.49711850705 CrossRefGoogle Scholar
  52. Xie P, Arkin PA. 1997. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78: 2539–2558.  https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2CrossRefGoogle Scholar
  53. Xu J, Koldunov N, Remedio ARC et al (2018) On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Clim Dyn 51:4525–4542CrossRefGoogle Scholar
  54. Xu J, Koldunov N, Remedio ARC et al (2019) Downstream effect of Hengduan Mountains on East China in the REMO regional climate model. Theor Appl Climatol 135:1641–1658CrossRefGoogle Scholar
  55. Xue F, Zeng Q, Huang R, Li C, Lu R, Zhou T (2015) Recent advances in monsoon studies in China. Adv Atmos Sci 32:206–229.  https://doi.org/10.1007/s00376-014-0015-8 CrossRefGoogle Scholar
  56. Yang B, Zhang Y, Qian Y, et al. 2019. Better monsoon precipitation in coupled climate models due to bias compensation. npj Clim Atmos Sci2: 43Google Scholar
  57. Yang H, Zhi X, Gao J et al (2011) Variation of East Asian summer monsoon and its relationship with precipitation of China in recent 111 years. Agricultural Science & Technology 12:1711–1716.  https://doi.org/10.16175/j.cnki.1009-4229.2011.11.012 CrossRefGoogle Scholar
  58. Zhang L, Fraedrich K, Zhu X et al (2015a) Interannual variability of winter precipitation in Southeast China. Theor Appl Climatol 119:229–238CrossRefGoogle Scholar
  59. Zhang L, Sielmann F, Fraedrich K et al (2015b) Variability of winter extreme precipitation in Southeast China: contributions of SST anomalies. Clim Dyn 45:2557–2570CrossRefGoogle Scholar
  60. Zhu Q, He J, Wang P (1986) A study of circulation differences between East-Asian and Indian summer monsoons with their interaction. Adv Atmos Sci 3:466–477.  https://doi.org/10.1007/BF02657936 CrossRefGoogle Scholar
  61. Zhu S, Ge F, Fan Y et al (2020) Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming. Clim Change:1–18.  https://doi.org/10.1007/s10584-019-02640-1
  62. Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J Clim 26:2353–2367.  https://doi.org/10.1175/jcli-d-11-00722.1 CrossRefGoogle Scholar
  63. Zou L, Zhou T (2016) Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: a comparison to the stand-alone RCM. J Geophys Res 121:2691–2704.  https://doi.org/10.1002/2015JD024519 CrossRefGoogle Scholar
  64. Zou L, Zhou T, Peng D (2016) Dynamical downscaling of historical climate over CORDEX East Asia domain: a comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J Geophys Res 121:1442–1458.  https://doi.org/10.1002/2015jd023912 CrossRefGoogle Scholar
  65. Zu T, Xue H, Wang D, Geng B, Zeng L, Liu Q, Chen J, He Y (2019) Interannual variation of the South China Sea circulation during winter: intensified in the southern basin. Clim Dyn 52:1917–1933.  https://doi.org/10.1007/s00382-018-4230-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disasters, Ministry of Education / Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Climate Service Center Germany, Helmholtz Centre for Materials and Coastal ResearchHamburgGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
  5. 5.Shirshov Institute of Oceanology, Russian Academy of ScienceMoscowRussia
  6. 6.Meteorological Institute, University of HamburgHamburgGermany
  7. 7.Plateau Atmosphere and Environment Key Laboratory of Sichuan Province / School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina

Personalised recommendations