Effects of persistent wind speeds on turbulent fluxes in the water-atmosphere interface

  • Yusri Yusup
  • Heping LiuEmail author
Original Paper


Understanding air-water interactions is critical to establishing the role of inland water bodies in regulating local and regional weather so that more accurate parameterizations of flux exchange in numerical weather models can be achieved. Wind-induced mixing actively alters environmental variables, leading to changes in turbulent exchanges of latent heat (LE) and sensible heat (H) fluxes above water surfaces. It remains extensively unexplored as to how winds in different wind speed ranges modulate coupling of different variables, which in turn regulates LE and H. Here, we analyze 28-month eddy covariance data collected over a large reservoir. We categorize the dataset into four wind classes with different wind speed ranges: I (< 2.32 m s−1), II (2.32–3.69 m s−1), III (3.69–5.13 m s−1), and IV (> 5.13 m s−1). The enhanced mechanical mixing promotes LE and H with the increased wind classes due to the increased sensitivity to Δe and ΔT despite the reduced role of atmospheric stability. Hence, the highest LE and H occur in IV, under moderately unstable and stable conditions. Overall, the bulk transfer coefficients behave similarly under a certain stability condition across all wind classes while the similarity theory systematically underestimates their magnitudes. These results have important applications in improving parameterization schemes to estimate fluxes over water surfaces in numerical models.


Water-atmosphere interaction Bulk transfer relations Eddy covariance fluxes Lake evaporation Atmospheric stability 



We wish to thank the two anonymous reviewers for their constructive comments. We are grateful for Dan Gaillet, Billy Lester, Jason Temple, and many other people in Pearl River Valley Water Supply District in Ridgeland, Mississippi, as well as Yu Zhang, Haimei Jiang, Li Sheng, Rongping Li, Yu Wang, and Guo Zhang who contributed to the fieldwork. We thank Qianyu Zhang for her initial analyses of the data used in this work. According to the AGU Publications Data Policy, the data used in this paper are deposited in a public domain repository (

Funding information

The National Science Foundation AGS provided support under grant 1112938. Y.Y. received support from Universiti Sains Malaysia (USM) that awarded the Research University (RU) grant 1001/PTEKIND/811316 and Universiti Sains Malaysia (USM) Bridging Grant 2018 304/PTEKIND/6316289 to prepare this paper.


  1. Andreas EL, Mahrt L, Vickers D (2015) An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Q J R Meteorol Soc 141(687):642–654CrossRefGoogle Scholar
  2. Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange MB, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31(1):160–172CrossRefGoogle Scholar
  3. Blanken PD, Rouse WR, Culf AD, Spence C, Boudreau LD, Jasper JN, Kochtubajda B, Schertzer WM, Marsh P, Verseghy D (2000) Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour Res 36(4):1069–1077CrossRefGoogle Scholar
  4. Blanken PD, Rouse WR, Schertzer WM (2003) Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. J Hydrometeorol 4(4):680–693CrossRefGoogle Scholar
  5. Blanken PD, Spence C, Hedstrom N, Lenters JD (2011) Evaporation from Lake Superior: 1. Physical controls and processes. J Great Lakes Res 37(4):707–716CrossRefGoogle Scholar
  6. Bouin M-N, Caniaux G, Traullé O, Legain D, Le Moigne P (2012) Long-term heat exchanges over a Mediterranean lagoon. J Geophys Res Atmos 117(D23):D23104CrossRefGoogle Scholar
  7. Brutsaert W (1982) Evaporation into the atmosphere : theory, history, and applications. Kluwer, BostonCrossRefGoogle Scholar
  8. Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12):1527–1532CrossRefGoogle Scholar
  9. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189CrossRefGoogle Scholar
  10. Clayson CA, Fairall CW, Curry JA (1996) Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J Geophys Res Oceans 101(C12):28503–28513CrossRefGoogle Scholar
  11. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res Oceans 101(C2):3747–3764CrossRefGoogle Scholar
  12. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16(4):571–591CrossRefGoogle Scholar
  13. Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, vol 29. Springer Science + Business Media, Inc, USA, pp 181–208CrossRefGoogle Scholar
  14. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  15. Granger RJ, Hedstrom N (2011) Modelling hourly rates of evaporation from small lakes. Hydrol Earth Syst Sci 15(1):267–277CrossRefGoogle Scholar
  16. Gutiérrez-Loza L, Wallin MB, Sahlée E, Nilsson E, Bange HW, Kock A, Rutgersson A (2019) Measurement of air-sea methane fluxes in the Baltic Sea using the eddy covariance method. Front Earth Sci 7(93):2296–6463Google Scholar
  17. Henderson-Sellers B (1986) Calculating the surface energy balance for lake and reservoir modeling: a review. Rev Geophys 24(3):625–649CrossRefGoogle Scholar
  18. Li ZG, Lyu SH, Zhao L, Wen LJ, Ao YH, Wang SY (2016) Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan plateau. Theor Appl Climatol 124(3–4):723–735CrossRefGoogle Scholar
  19. Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36(9):1722–1735CrossRefGoogle Scholar
  20. Liu H, Zhang Y, Liu S, Jiang H, Sheng L, Williams QL (2009) Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J Geophys Res Atmos 114(D4):D04110Google Scholar
  21. Liu H, Blanken PD, Weidinger T, Nordbo A, Vesala T (2011) Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environ Res Lett 6(2):024022CrossRefGoogle Scholar
  22. Liu H, Zhang Q, Dowler G (2012) Environmental controls on the surface energy budget over a large southern inland water in the United States: an analysis of one-year eddy covariance flux data. J Hydrometeorol 13(6):1893–1910CrossRefGoogle Scholar
  23. Liu HP, Zhang QY, Katul GG, Cole JJ, Chapin FS, MacIntyre S (2016) Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environ Res Lett 11(6):064001CrossRefGoogle Scholar
  24. MacMahan J (2017) Increased aerodynamic roughness owing to surfzone foam. J Phys Oceanogr 47(8):2115–2122CrossRefGoogle Scholar
  25. Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, De Bruin HAR, Liu H (2007) The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound-Layer Meteorol 123(1):29–54CrossRefGoogle Scholar
  26. Metzger J, Nied M, Corsmeier U, Kleffmann J, Kottmeier C (2018) Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and penman estimates. Hydrol Earth Syst Sci 22(2):1135–1155CrossRefGoogle Scholar
  27. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res Atmos 116(D2):D02119CrossRefGoogle Scholar
  28. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359CrossRefGoogle Scholar
  29. Rouse WR, Oswald CM, Binyamin J, Blanken PD, Schertzer WM, Spence C (2003) Interannual and seasonal variability of the surface energy balance and temperature of Central Great Slave Lake. J Hydrometeorol 4(4):720–730CrossRefGoogle Scholar
  30. Spence C, Rouse WR, Worth D, Oswald C (2003) Energy budget processes of a small northern lake. J Hydrometeorol 4(4):694–701CrossRefGoogle Scholar
  31. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  32. Subin ZM, Riley WJ, Mironov D (2012) An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. J Adv Model Earth Syst 4(1):M02001Google Scholar
  33. Verburg P, Antenucci JP (2010) Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J Geophys Res Atmos 115:D11109CrossRefGoogle Scholar
  34. Vickers D, Mahrt L, Andreas EL (2015) Formulation of the sea-surface friction velocity in terms of the mean wind and bulk stability. J Appl Meteorol Climatol 54(2015):691–703CrossRefGoogle Scholar
  35. Wang B, Ma Y, Chen X, Ma W, Su Z, Menenti M (2015) Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan plateau. J Geophys Res Atmos 120(24):12327–12344CrossRefGoogle Scholar
  36. Wei Z, Miyano A, Sugita M (2016) Drag and bulk transfer coefficients over water surfaces in light winds. Bound-Layer Meteorol 160(2):1–28CrossRefGoogle Scholar
  37. Wick GA, Emery WJ, Kantha LH, Schlüssel P (1996) The behavior of the bulk – skin sea surface temperature difference under varying wind speed and heat flux. J Phys Oceanogr 26(10):1969–1988CrossRefGoogle Scholar
  38. Xiao W, Liu S, Wang W, Yang D, Xu J, Cao C, Li H, Lee X (2013) Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound-Layer Meteorol 148(3):479–494CrossRefGoogle Scholar
  39. Xiao K, Griffis TJ, Baker JM, Bolstad PV, Erickson MD, Lee X, Wood JD, Hu C, Nieber JL (2018) Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level. J Hydrol 561:59–75CrossRefGoogle Scholar
  40. Yusup Y, Liu H (2016) Effects of atmospheric surface layer stability on turbulent fluxes of heat and water vapor across the water-atmosphere interface. J Hydrometeorol 17(11):2835–2851CrossRefGoogle Scholar
  41. Zhang Q, Liu H (2013) Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States. J Geophys Res Atmos 118(10):4290–4302CrossRefGoogle Scholar
  42. Zhang Q, Liu H (2014) Seasonal changes in physical processes controlling evaporation over inland water. J Geophys Res Atmos 119(16):9779–9792CrossRefGoogle Scholar
  43. Zhu P, Furst J (2013) On the parameterization of surface momentum transport via drag coefficient in low-wind conditions. Geophys Res Lett 40(11):2824–2828CrossRefGoogle Scholar
  44. Zou Z, Zhao D, Liu B, Zhang JA, Huang J (2017) Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions. J Geophys Res Oceans 122(5):4123–4142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Environmental Technology, School of Industrial TechnologyUniversiti Sains MalaysiaGelugorMalaysia
  2. 2.Laboratory for Atmospheric Research, Department of Civil and Environmental EngineeringWashington State UniversityPullmanUSA

Personalised recommendations