Advertisement

Frequency, intensity, and duration of thermal inversions in the Jura Mountains of France

  • D. JolyEmail author
  • Y. Richard
Original Paper
  • 32 Downloads

Abstract

This analysis of the frequency, intensity, and duration of thermal inversions is based on daily minimum (tn) and maximum (tx) temperatures recorded over 3 years at 16 pairs of data loggers located under forest cover in the Jura Mountains of France. Each pair consists of a logger located at the bottom of a depression and another located higher up either nearby (local site) or more than 40 km away (regional site). The daily frequency of inversions is maximum at local sites for tn (50%) and minimum for tx at regional sites (4%). The maximum intensity of the inversions reaches 15.1 °C for tn and 16.2 °C for tx. The average intensity is about 2 °C: 1.5 °C for tx at local sites and 2.4 °C at regional sites. The duration of inversions is generally short: 60% of them last less than a day. Of the inversions that last for more than 1 day, 15% exceed 3 days and the maximum duration observed is 22 days. The relationship between the diurnal amplitude of temperature and the frequency, intensity, and duration of inversions indicates that mesoscale atmospheric conditions directly influence inversions.

Notes

Acknowledgments

We thank Météo-France for providing data free-of-charge, the “Parc Naturel Régional du Haut-Jura” and the “Conseil Régional Franche-Comté” which largely financed this study as part of the “Haut-Jura: l’énergie du territoire” LEADER programme, the “Long-term ecological research site Jurassian Arc” (http://zaaj.univ-fcomte.fr/?lang=en) for purchasing some of the loggers and the local mayors and private landowners who allowed us to set up the loggers in forest plots belonging to them.

Supplementary material

704_2019_2855_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)
704_2019_2855_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb)

References

  1. Alekseychik P, Mammarella I, Launiainen S, Rannik Ü, Vesala T (2013) Evolution of the nocturnal decoupled layer in a pine forest canopy. Agr Forest Meteor 174–175:15–27Google Scholar
  2. Angela M, Rendón JF, Salazar CA, Wirth P, Wirth V (2015) Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. J Appl Meteorol Climatol 54(2):302–321Google Scholar
  3. Anquetin S, Guilbaud C, Chollet JP (1998) The formation and destruction of inversion layers within a deep valley. J Appl Meteorol 37:1547–1560Google Scholar
  4. Antonioli S (2016) Lapse rate inversions in the Po valley: a 30-year overview. Master “environmental and land planning engineering”, Polytechnico Milano, 97Google Scholar
  5. Aubinet MB, Heinesch B, Yernaux H, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound-Layer Meteorol 108:397–417Google Scholar
  6. Bailey A, Chase TN, Cassano JJ, Noone D (2011) Changing temperature inversion characteristics in the US Southwest and relationships to large-scale atmospheric circulation. J Appl Meteorol Climatol 50(6):1307–1323Google Scholar
  7. Barry RG (1983) Arctic Ocean ice and climate. Perspectives on a century of polar research. Ann Ass Amer Geogr 73(4):485–501Google Scholar
  8. Barry RG (2008) Mountain weather and climate, 3rd edn. Press, Cambridge University, 506 pGoogle Scholar
  9. Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504Google Scholar
  10. Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. For Ecol Manag 135(1-3):289–301Google Scholar
  11. Brümmer B, Schultze M (2015) Analysis of a 7-year low-level temperature inversion data set measured at the 280 m high Hamburg weather mast. Meteorol Z 24(5):481–494Google Scholar
  12. Busch N, Ebel U, Kraus H, Schaller E (1982) The Structure of the subpolar inversion-capped ABL. Arch Met Geoph Biokl Ser A 31(1-2):1–18.  https://doi.org/10.1007/BF02257738 Google Scholar
  13. Chemel C, Arduini G, Staquet C, Largeron Y, Legain D, Tzanos D, Paci A (2016) Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos Environ 128:208–215Google Scholar
  14. Czarnecka M, Nidzgorska-Lencewicz J (2017) The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environ Prot Eng 44(2):157–172.  https://doi.org/10.5277/epe170213 Google Scholar
  15. Daly C, Conklin DR, Unsworth MH (2010) Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30(22):1857–1864.  https://doi.org/10.1002/joc.2007 Google Scholar
  16. De Wekker SFJ, Kossmann M (2015) Convective boundary layer heights over mountainous terrain - a review of concepts. Front Earth Sci 3, doi: https://doi.org/10.3389/feart.2015.00077
  17. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Chang Biol 17:1022–1035Google Scholar
  18. Dorninger M, Whiteman CD, Bica B, Eisenbach S, Pospichal B, Steinacker R (2011) Meteorological events affecting cold-air pools in a small basin. J Appl Meteorol Climatol 50:2223–2234Google Scholar
  19. Dubreuil V, Debortoli N, Funatsu B, Nédélec V, Durieux L (2012) Impact of land-cover change in the southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184(2):877–891.  https://doi.org/10.1007/s10661-011-2006-x
  20. Dupont JC, Haeffelin M, Stolaki S, Elias T (2016) Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset. Pure Appl Geophys 173(1337):1358–1358.  https://doi.org/10.1007/s00024-015-1159-x Google Scholar
  21. El Melki T (2007) Inversions thermiques et concentrations de polluants atmosphériques dans la basse troposphère de Tunis. Climatologie, doi: https://doi.org/10.4267/climatologie.773
  22. Erpicum M (2004) Discrimination des effets radiatifs et des effets advectifs à partir des observations de températures du réseau météo-routier de Wallonie. Norois:105–110.  https://doi.org/10.4000/norois.1184
  23. Fallot JM (2012) Influence de la topographie et des accumulations d’air froid sur les températures moyennes mensuelles et annuelles en Suisse. In Bigot S and Rome S (eds.). 25ème colloque de l’Association Internationale de Climatologie (AIC): 273-278Google Scholar
  24. Fernando HJS, Verhoef B, Di Sabatino S, Leo LS, Park S (2013) The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteor 147:443–468.  https://doi.org/10.1007/s10546-012-9795-5 Google Scholar
  25. Foster CS, Crosman ET, Horel JD (2017) Simulations of a cold-air pool in Utah’s Salt Lake Valley: sensitivity to land use and snow cover. Boundary-Layer Meteor 164:63–87Google Scholar
  26. Fratianni S, Cassardo C, Cremonini R (2009) Climatic characterization of foehn episodes in Piedmont, Italy. Geogr Fis Din Quat 32:15–12Google Scholar
  27. Froelich N J, Schmid H P (2006) Flow divergence and density flows above and below a deciduous forest. Part II below-canopy topographic flows. Agric Forest Meteorol 138:29–43Google Scholar
  28. Froelich NJ, Schmid HP, Grimmond CSB, Su H-B, Oliphant AJ (2005) Flow divergence and density flows above and below a deciduous forest. Part I. Non-zero mean vertical wind above canopy. Agri For Meteorol 133(1-4):140–152.  https://doi.org/10.1016/j.agrformet.2005.09.005 Google Scholar
  29. Froelich NJ, Grimmond CSB, Schmid HP (2011) Nocturnal cooling below a forest canopy: model and evaluation. Agric Forest Meteor 151:957–968Google Scholar
  30. Gardner AS, Sharp MJ, Koerner RM, Labine C, Boon S, Marshall SJ, Burgess DO, Lewis D (2009) Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. J Clim 22(16):4281–4298.  https://doi.org/10.1175/2009JCLI2845.1 Google Scholar
  31. Gaudio N, Gendre X, Saudreau M, Seigner V, Balandier P (2017) Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: a new statistical method to analyse hourly temporal dynamics. Agr Forest Meteor 237-238:71–79Google Scholar
  32. Geiger R, Aron RH, Todhnter P (2003) The climate near the ground. Rowman & Littlefield Publishers, Inc, Lanham, Maryland, 584Google Scholar
  33. Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182Google Scholar
  34. Grimmond CSB, Robeson SM, Schoof JT (2000) Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Clim Res 15(2):137–149Google Scholar
  35. Gross G (1987) Some effects of deforestation on nocturnal drainage flow and local climate. A numerical study. Boundary-Layer Meteor 38:315–337Google Scholar
  36. Guédjé FK, Houéto VVA, Houngninnou E (2017) Features of the low-level temperature inversions at Abidjan upper-air station (Ivory Coast). J Mater Envir Sci 8(1):264–272Google Scholar
  37. Gustavsson T, Karlsson M, Bogren J, Lindqvist S (1998) Development of temperature patterns during clear nights. J Appl Meteorol 37:559–571Google Scholar
  38. Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB, McCullough IM (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397Google Scholar
  39. Hosler C (1961) Low-level inversion frequency in the contiguous United States. Mon Weather Rev 89:319–339Google Scholar
  40. Ji D, Wang Y, Wang L, Chen L, Hu B, Tang G, Xin J, Song T, Wen T, Sun Y, Pan Y, Liu Z (2012) Analysis of heavy pollution episodes in selected cities of northern China. Atmos Environ 50:338–348.  https://doi.org/10.1016/j.atmosenv.2011.11.053 Google Scholar
  41. Ji F, Evans JP, Di Luca A et al (2018) Projected change in characteristics of near surface temperature inversions for southeast Australia. Clim Dyn 39:1–17.  https://doi.org/10.1007/s00382-018-4214-3 Google Scholar
  42. Joly D (2014) Etude comparative de la temperature en foret et en espace ouvert dans le parc naturel regional du Haut-Jura (Comparison of temperature in forest and on open space in Jura Mountain). Climatologie, 11. On line updated on: 22/07/2015.  https://doi.org/10.4267/climatologie.562
  43. Joly D, Berger A, Buoncristiani JF, Champagne O, Pergaud J, Richard Y, Soare P, Pohl B (2018) Geomatic downscaling of temperatures in the Mont-Blanc massif. Int J Climatol 38(4):1846–1863.  https://doi.org/10.1002/joc.5300 Google Scholar
  44. Joly D, Gillet F (2017) Interpolation of temperatures under forest cover on a regional scale in the French Jura Mountains. Int J Climatol 37:659–670.  https://doi.org/10.1002/joc.5029 Google Scholar
  45. Kadygrov EN, Khaikin M, Miller E, Shaposhnikov A, Troitsky AV (2005) Advanced atmospheric boundary layer temperature profiling with mtp-5he microwave system. In: Proceedings WMO technical conference on instruments and methods of observation, 4-7 May, 2005, Bucharest, Romania (TECO-2005)Google Scholar
  46. Kahl JD (1990) Characteristic of the low-level temperature inversion along the Alaska Arctic Coast. Int J Climatol 10:537–548Google Scholar
  47. Karlsson IM (2000) Nocturnal air temperature variations between forest and open areas. J Appl Meteorol 39:851–862Google Scholar
  48. Kiefer MT, Zhong S (2013) The effect of sidewall forest canopies on the formation of cold-air pools: a numerical study. J Geophys Res Atmos 118:5965–5878.  https://doi.org/10.1002/jgrd.50509 Google Scholar
  49. Kiefer MT, Zhong S (2015) The role of forest cover and valley geometry in cold-air pool evolution. J Geophys Res Atmos 120:8693–8711Google Scholar
  50. Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2013) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33(3):539–555.  https://doi.org/10.1002/joc.3444 Google Scholar
  51. Kukkonen J et al (2005) Analysis and evaluation of selected local-scale PM air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos Environ 39(15):2759–2773.  https://doi.org/10.1016/j.atmosenv.2004.09.090 Google Scholar
  52. Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WO, Horst TW (2013) The persistent cold-air pool study bull. Am Meteorol Soc 94(1):51–63Google Scholar
  53. Largeron Y, Staquet C (2016) Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos Environ 135:92–108.  https://doi.org/10.1016/j.atmosenv.2016.03.045 Google Scholar
  54. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agr Forest Meteor 91:39–49Google Scholar
  55. Li X, Wang L, Chen D, Yang K, Xue B, Sun L (2013) Near-surface air temperature lapse rates in mainland China during 1962–2011. J Geophys Res Atmos 118(14):7505–7515.  https://doi.org/10.1002/jgrd.50553 Google Scholar
  56. Mahrt L, Heald R (2015) Common marginal cold pools. J Appl Meteorol Climatol 4(2):339–351Google Scholar
  57. Mahrt L, Richardson S, Seaman N, Stauffer D (2010) Non-stationary drainage flows and motions in the cold pool. Tellus 62:698–705.  https://doi.org/10.1111/j.1600-0870.2010.00473.x Google Scholar
  58. Marvin CF (1914) Air drainage explained. Mon Weather Rev 10:583–585Google Scholar
  59. Mernild SH, Liston G (2009) The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. J Appl Meteorol Climatol 49(1):47–67.  https://doi.org/10.1175/2009JAMC2065.1 Google Scholar
  60. Milionis AE, Davies TD (2008) A comparison of temperature inversion statistics at a coastal and a non-coastal location influenced by the same synoptic regime. Theor Appl Climatol 94:225–239Google Scholar
  61. Mirocha JD, Branko K (2010) Large-eddy simulation study of the influence of subsidence on the stably stratified atmospheric boundary layer. Boundary-Layer Meteor 134(1):1–21.  https://doi.org/10.1007/s10546-009-9449-4 Google Scholar
  62. Mo R, Joe P, Isaac GA, Gultepe I, Rassemusen R, Milbrandt J, Mctaggart-Cowan R, Mailhot J, Brugman M, Smith T, Scott B (2014) Mid-mountain clouds at whistler during the Vancouver 2010 winter olympics and paralympics. Pure Appl Geophys 171(157–183):201–183.  https://doi.org/10.1007/s00024-012-0540-2 Google Scholar
  63. Nigrelli G, Fratianni S, Zampollo A, Turconi L, Chiarle M (2017) The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor Appl Climatol Online First 131:1479–1491.  https://doi.org/10.1007/s00704-017-2066-0 Google Scholar
  64. Oke TR (1987) Boundary layer climates. 2nd ed Routledge, 435Google Scholar
  65. Paci A, Staquet C et al (2015) The Passy-2015 field experiment: an overview of the campaign and preliminary results. Proc of the 33rd international conference on alpine meteorology, Innsbruck, Austria (2015)Google Scholar
  66. Paci A, Staquet C, Allard J, Barral H, Canut G, Cohard JM, Jaffrezo JL et al (2016) La campagne Passy-2015 : dynamique atmospherique et qualite de l’air dans la vallee de l’Arve. Pollution atmospherique, 231- 232, on line, updated on: 06/11/2017. http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5913
  67. Pagès M, Pepin N, Miróa JR (2017) Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteor Appl 24:290–302Google Scholar
  68. Palarz A, Celi ́nski-Mysław D, Ustrnul Z (2018) Temporal and spatial variability of surface-based inversions over Europe based on ERA-Interim reanalysis. Int J Climatol 38:158–168.  https://doi.org/10.1002/joc.5167 Google Scholar
  69. Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Bound-Layer Meteor 92:195–227.  https://doi.org/10.1023/A:1002070526425 Google Scholar
  70. Patsiou TS, Conti E, Theodoridis S, Randin CF (2017) The contribution of cold air pooling to the distribution of a rare and endemic plant of the Alps. Plant Ecol Diver 10(1):29–42Google Scholar
  71. Pepin NC, Duane WA (2007) Comparison of surface and free-air temperature variability and trends at radiosonde sites and nearby high elevation surface stations. Int J Climatol 27(11):1519–1529.  https://doi.org/10.1002/joc.1541 Google Scholar
  72. Pepin NC, Norris JR (2005) An examination of the differences between surface and free-air temperature trend at high-elevation sites: relationships with cloud cover, snow cover, and wind. J Geophys Res 110:D24112.  https://doi.org/10.1029/2005JD006150 Google Scholar
  73. Porté A, Huard F, Dreyfus P (2004) Microclimate beneath pine plantation, semi-mature pine plantation and mixed broadleaved-pine forest. Agr Forest Meteor 126:175–182Google Scholar
  74. Potter BE, Teclaw RM, Zasada JC (2001) The impact of forest structure on near-ground temperatures during two years of contrasting temperature extremes. Agric Forest Meteor 106(4):331–336Google Scholar
  75. Price J, Vosper S, Brown A, Ross A, Clark P, Davies F, Horlacher V, Claxton B, McGregor J, Hoare J et al (2011) COLPEX: field and numerical studies over a region of small hills. Bull Am Meteorol Soc 9(12):1636–1650Google Scholar
  76. Prӧmmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int J Climatol 30(5):760–773.  https://doi.org/10.1002/joc.1916 Google Scholar
  77. Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16(7):1032–1046.  https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2 Google Scholar
  78. Sabatier T, Paci A, Canut G, Largeron Y, Dabas A, Donier JM, Douffet T (2018) Wintertime local wind dynamics from scanning doppler lidar and air quality in the Arve River valley. Atmosphere 9(4):118.  https://doi.org/10.3390/atmos9040118 Google Scholar
  79. Shimokawabe A, Yamaura Y, Akasaka T, Sato T, Shida Y, Yamanaka S, Nakamura F (2015) The distribution of cool spots as microrefugia in a mountainous area. PLoS One 10:e0135732.  https://doi.org/10.1371/journal.pone.0135732 Google Scholar
  80. Sotiropoulou G, Tjernström MG, Sedlar J, Achtert P, Brooks BJ, Brooks IM, Persson OG, Prytherch J, Salisbury DJ, Shupe MD, Johnston PE, Wolfe D (2016) Atmospheric conditions during the Arctic clouds in summer experiment (ACSE): contrasting open water and sea ice surfaces during melt and freeze-up seasons. Amer Meteor Soc 29:8721–8744.  https://doi.org/10.1175/JCLI-D-16-0211.1 Google Scholar
  81. Schuster C, Kirchner M, Jakobi G (2014) Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. Int J Biometeorol 58(4):485–498.  https://doi.org/10.1007/s00484-013-0709-0 Google Scholar
  82. Staebler RM, Fuentes JD, Lee XH, Puckett KJ, Neumann HH, Deary JA (2000) Long term flux measurements at the borden forest. CMOS Bull 28(1):9–16Google Scholar
  83. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agr Forest Meteor 122:139–156Google Scholar
  84. Streten NA, Ishikawa N, Wendler G (1974) Some observations of the local wind regime on an Alaskan Arctic glacier. Arch Meteor Geophys Bioklimatol Ser B 22:337–350Google Scholar
  85. Sun H, Clark TL, Stull RB, Black TA (2006) Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain. Part I: interactions between thermally-forced circulations. Agr Forest Meteor 140:338–351Google Scholar
  86. Suomi J (2018) Extreme temperature differences in the city of Lahti, southern Finland: intensity, seasonality and environmental drivers. Weather and Climate Extremes 19:20–28Google Scholar
  87. Van de Wiel B, Ronda R, Moene A, de Bruin H, Holtslag A (2002) Intermittent turbulence and oscillations in the stable boundary layer over land. Part 1: a bulk model. J Atmos Sci 59:942–958Google Scholar
  88. Vitasse Y, KleinJames G, Kirchner JW, Rebetez M (2017) Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theor Appl Climatol 130(3–4):1073–1083Google Scholar
  89. Wharton S, Ma S, Baldocchi DD, Falk M, Newman JF, Osuna JL, Bible K (2017) Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain. Agr Forest Meteor 237–238:18–29Google Scholar
  90. Whiteman CD, Bian X, Zhong S (1999) Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J Appl Meteorol 38:1103–1117Google Scholar
  91. Whiteman CD, Zhong S, Shaw WJ, Hubbe JM, Bian X, Mittelstadt J (2001) Cold pools in the Columbia basin. Weather Forecast 16:432–447Google Scholar
  92. Wolf T, Esau I, Reuder J (2016) Analysis of the vertical temperature structure in the Bergen valley, Norway, and its connection to pollution episodes. J Geophys Res Atmos 119:10645–10662Google Scholar
  93. Xu X (2014) Numerical study of canopy flows in complex terrain. PhD thesis, City University of New York, New York, 149Google Scholar
  94. Zhang Z, Gong D, Mao R, Kimd SJ, Xub J, Zhao X, Ma Z (2017) Cause and predictability for the severe haze pollution in downtown Beijing in November–December 2015. Sci Total Environ 592:627–638.  https://doi.org/10.1016/j.scitotenv.2017.03.009 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire ThéMACNRS and Université Bourgogne Franche-ComtéBesançonFrance
  2. 2.Centre de Recherches de Climatologie/BiogéosciencesCNRS and Université Bourgogne Franche-ComtéDijonFrance

Personalised recommendations