Advertisement

A model for estimating transpiration of rainfed urban trees in Mediterranean environment

  • Gianfranco RanaEmail author
  • Rossana M. Ferrara
  • Gianluigi Mazza
Original Paper
  • 33 Downloads

Abstract

In this study, a model for estimating actual transpiration (T) is developed and tested for three tree species (Olea europaea, Citrus sinensis, Pinus pinea), growing in rainfed conditions in urban environment under Mediterranean semi-arid climate. The model, previously tested on many field crops, is based on the “big leaf” Penman-Monteith (PM) formulation of T in which canopy resistance (rc) is modeled with respect to local climatological conditions in different plant water status. Here rc is expressed as a function of available energy, vapor pressure deficit and aerodynamic resistance, and the trees’ water status was evaluated by means of crop water stress index. On an hourly scale, the comparison with T measured by sap flow thermal dissipation technique shows good performances of the model for all investigated species under contrasting water stress conditions. At daily scale, T modeled is less accurate for all species, because of the lack of stationarity conditions in the PM approach. At seasonal scale, however, the model gives good estimation of T, with an underestimation of − 1% for Olea and Pinus and overestimation of + 8% for Citrus with respect to the measured T values. The proposed model needs species-specific experimental calibration, but it may have good perspective of applicability in supporting water irrigation planning in urban forestry.

Notes

References

  1. Agam N, Cohen Y, Bernic JAJ, Alchanatis V, Kool D, Dag A, Yermiyahu U, Ben-Gal A (2013) An insight to the performance of crop water stress index for olive trees. Agric Water Manag 113:79–86CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage paper No. 56. FAO, Rome, p 300Google Scholar
  3. Amoroso G, Frangi P, Piatti R, Fini A, Ferrini F (2010) Effect of mulching on plant and weed growth, substrate water content, and temperature in container-grown giant arborvitae. HortTechnology 20:957–962CrossRefGoogle Scholar
  4. Argov Y, Rössler Y, Voet H, Rosen D (1999) The biology and phenology of the citrus whitefly, Dialeurodes citri, on citrus in the Coastal Plain of Israel. Entomologia Experimentalis et Applicata 93:21–27CrossRefGoogle Scholar
  5. Arya SP (2001) Introduction to micrometeorology. Academic Press, London, 420 ppGoogle Scholar
  6. Asaeda T, Ca VT (1993) The subsurface transport of heat and moisture and its effect on the environment: a numerical model. Bound.-Layer Meteor. 65:159–179CrossRefGoogle Scholar
  7. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, Heidelberg, London, New York 438 ppCrossRefGoogle Scholar
  8. Ballester C, Jiménez-Bello MA, Castel JR, Intrigliolo DS (2013) Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric For Meteorol 168:120–129CrossRefGoogle Scholar
  9. Ballinas M, Barradas VL (2015) The urban tree as a tool to mitigate the urban heat island in Mexico city: a simple phenomenological model. J. Environ. Qual.  https://doi.org/10.2134/jeq2015.01.0056
  10. Barradas VL, Ramos-Vázquez A, Orozco-Segovia A (2004) Stomatal conductance in a tropical xerophilous shrubland at a lava substratum. Int J Biometeorol 48:119–127.  https://doi.org/10.1007/s00484-003-0195-x CrossRefGoogle Scholar
  11. Ben-Gal A, Agam N, Alchanatis V, Cohen Y, Yermiyahu U, Zipori I, Presnov E, Sprintsin M, Dag A (2009) Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrig Sci 27:367–376CrossRefGoogle Scholar
  12. Berni JAJ, Zarco-Tejada PJ, Sepulcre-Cantó G, Fereres E, Villalobos F (2009) Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens Environ 113:2380–2388CrossRefGoogle Scholar
  13. Brutsaert WH (1982) Evaporation into atmosphere: theory, history and application. D. Reidel, Dordrecth, p 299CrossRefGoogle Scholar
  14. Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546.  https://doi.org/10.1007/s00468-004-0339-6 CrossRefGoogle Scholar
  15. Chen L, Zhang Z, Li Z, Tang J, Caldwell P, Zhang W (2011) Biophysical control of whole tree transpiration under an urban environment in northern China. J Hydrol 402:388–400CrossRefGoogle Scholar
  16. Chen L, Zhang Z, Ewers BE (2012) Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One 7(10):47882.  https://doi.org/10.1371/journal.pone.0047882 CrossRefGoogle Scholar
  17. Costello LR, Matheny N, Clark J, Jones K (2000) A guide to estimating irrigation water needs of landscape plantings in California. In: The landscape coefficient method and WUCOLS III. University of California Cooperative Extension California Department of Water Resources, SacramentoGoogle Scholar
  18. Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24:1395–1421CrossRefGoogle Scholar
  19. Daudet FA, Perrier A (1968) Etude de l’evaporation ou de la condensation a la surface d’un corp a partir du bilan energetique. Rev Gen Therm 76:353–364Google Scholar
  20. Daudet FA, Le Roux X, Sinoquet H, Adam B (1999) Wind speed and leaf boundary layer conductance variation within tree crown consequences on leaf-to-atmosphere coupling and tree functions. Agric. For. Meteorol. 97:171–185CrossRefGoogle Scholar
  21. Davies WJ, Metcafle J, Lodge TA, da Costa AR (1986) Plant growth substances and the regulation of growth under drought. Aust J Plant Physiol 13:105–125Google Scholar
  22. Doll D, Ching JKS, Kaneshiro J (1985) Parameterisation of subsurface heating for soil and concrete using net radiation data. Bound.-Layer Meteor. 32:351–372CrossRefGoogle Scholar
  23. Doorenbos, J., Kassam, A.H., 1979. Yield response to water. U.N. Food and Agriculture Organization Irrigation and Drainage Paper No. 33, RomeGoogle Scholar
  24. EEA (European Environment Agency) (2016) Mapping and assessing the condition of Europe’s ecosystems: progress and challenges. Report No 3/2016, 148 pp.Google Scholar
  25. Fanjul L, Barradas VL (1985) Stomatal behaviour of two heliophile understorey species of a tropical deciduous forest in Mexico. J Appl Ecol 22:943–954.  https://doi.org/10.2307/2403242 CrossRefGoogle Scholar
  26. Ferrara RM, Mazza G, Muschitiello C, Castellini M, Stellacci AM, Navarro A, Lagomarsino A, Vitti C, Rossi R, Rana G (2017) Short-term effects of conversion to no-tillage on respiration and chemical - physical properties of the soil: a case study in a wheat cropping system in semi-dry environment. Italian Journal of Agrometeorology 1:47–58.  https://doi.org/10.19199/2017.1.2038-5625.047 Google Scholar
  27. Fini A, Frangi P, Moria J, Donzelli D, Ferrini F (2017) Nature based solutions to mitigate soil sealing in urban areas: results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ Res 156:443–454CrossRefGoogle Scholar
  28. Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón JJ, Intrigliolo DS, Fereres E (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agric 14:660–678CrossRefGoogle Scholar
  29. Gonzalez-Dugo V, Zarco-Tejada PJ, Fereres E (2014) Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards. Agric For Meteorol 198–199:94–104CrossRefGoogle Scholar
  30. Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:81–88CrossRefGoogle Scholar
  31. Granier A (1987) Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann Sci For 44:1–14CrossRefGoogle Scholar
  32. Grimmond CSB, Oke TR (1991) An evapotranspiration-interception model for urban areas. Water Resour Res 27:1739–1755CrossRefGoogle Scholar
  33. Grimmond CSB, Cleugh HA, Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmospheric Environment B 25:311–326Google Scholar
  34. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292CrossRefGoogle Scholar
  35. Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA (1971) Forest Environments in Tropical Life Zones: a pilot study. Pergamon Press, Oxford.Google Scholar
  36. Hoshika Y, Fares S, Savi F, Gruening C, Goded I, De Marco A, Sicard P, Paoletti E (2017) Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests. Agric For Meteorol 234–235:212–221CrossRefGoogle Scholar
  37. Itier B, Flura D, Belabbes K, Kosuth P, Rana G, Figueiredo L (1992) Relations between relative evapotranspiration and predawn leaf water potential in soybean grown in several locations. Irrig Sci 13:109–114CrossRefGoogle Scholar
  38. Jackson RD, Idso SB, Reginato RL, Pinter PJ Jr (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17:1133–1141CrossRefGoogle Scholar
  39. Jarvis PG (1976) The interpretation of the variation in leaf water potential and stomatal conductance found in canopies. Phil Trans R Soc Lond Ser B 273:593–610CrossRefGoogle Scholar
  40. Jarvis PG, McNaughton KG (1985) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49Google Scholar
  41. Karlik, J.F., McKay, A.H., (2002). Leaf area index, leaf mass density, and allometric relationships derived from harvest of blue oaks in a California oak savanna. USDA Forest Service Gen. Tech. Rep. PSW-GTR-184Google Scholar
  42. Katerji N, Ferreira I, Mastrorilli N, Losavio N (1990) A simple equation to calculate crop evapotranspiration: results of several years of experimentation. Acta Hortic 278:477–489CrossRefGoogle Scholar
  43. Katerji N, Hallaire M (1984) Les grandeurs de reference utilisables dam l’etude de l’alimentation en eau des cultures. Agronomie 4(10):999–1008CrossRefGoogle Scholar
  44. Katerji N, Perrier A (1983) Modelisation de l’evapotranspiration reelle d’une parcelle de luzerne: role dune coefficient culturale. Rev Agron 3(6):513–521CrossRefGoogle Scholar
  45. Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600CrossRefGoogle Scholar
  46. Katerji N, Rana G (2013) FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region. Theor Appl Climatol 116(3):515–536Google Scholar
  47. Kelliher FM, Leuning R, Raupach MR, Schulze E-D (1995) Maximum conductances for evaporation from global vegetation types. Agri For Metereol 73:1–16CrossRefGoogle Scholar
  48. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  49. Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13(1):45–82Google Scholar
  50. Kreith F (1973) Principle of heat transfer. Dun Donnelley, New York, 651 ppGoogle Scholar
  51. Legates DR, McCabe GJ (1999) Evaluating the use of ‘goodness-of fit’ measures in hydrologic and hydroclimatic model validation. Wat Resou Res 35:233–241CrossRefGoogle Scholar
  52. Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J Appl Met 73:312–327CrossRefGoogle Scholar
  53. Lindén J, Fonti P, Espera J (2016) Temporal variations in microclimate cooling induced by urban trees in Mainz. Germany Urb For Urb Gr 20:198–209CrossRefGoogle Scholar
  54. Litvak E, McCarthy HR, Pataki DE (2012) Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation. Tree Physiol 32:373–388CrossRefGoogle Scholar
  55. Litvak E, McCarthy HR, Pataki DE (2017) A method for estimating transpiration of irrigated urban trees in California. Landsc Urban Plan 158:48–61CrossRefGoogle Scholar
  56. Loridan T, Grimmond CSB (2012) Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. Am Meteorol Soc 51:219–241.  https://doi.org/10.1175/JAMC-D-11-038.1 Google Scholar
  57. McCaughey J (1985) Energy balance storage terms in a mature mixed forest at Petawawa Ontario—a case study. Bound-Layer Meteor 31:89–101CrossRefGoogle Scholar
  58. McNaughton KG (1976) Evaporation and advection. I. Evaporation from extensive homogeneous surfaces. Q J R Meteorol Sot 102:181–191CrossRefGoogle Scholar
  59. Mitchell VG, Cleugh HA, Grimmond CSB, Xu J (2008) Linking urban water balance and energy balance models to analyse urban design options. Hydrol Process 22:2891–2900CrossRefGoogle Scholar
  60. Monteith JL (1965) Evaporation and atmosphere. The state and movement of water in living organisms. Symposia of the Society for Experimental Biology 19:205–234Google Scholar
  61. Nassar IN, Horton R (1999) Salinity and compaction effects on soil water evaporation and water and solute. Soil Sci Soc Am J 63:752–758.  https://doi.org/10.2136/sssaj1999.634752x CrossRefGoogle Scholar
  62. Nielsen CN, Bühler O, Kristoffersen P (2007) Soil water dynamics and growth of street and park trees. Arboriculture Urban Forest 33:231–245Google Scholar
  63. Novak, M. D. (1981) The moisture and thermal regimes of a bare soil in the Lower Fraser Valley during spring. Ph.D. thesis, The University of British Columbia, Vancouver, BC, Canada, 153 pp.Google Scholar
  64. Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int J Climatol 25:1405–1419CrossRefGoogle Scholar
  65. Pataki DE, Boone CG, Hogue TS (2011a) Socio-ecohydrology and the urban water challenge. Ecohydrology 347:341–347.  https://doi.org/10.1002/eco CrossRefGoogle Scholar
  66. Pataki DE, McCarthy HR, Litvak E, Pincetl S (2011b) Transpiration of urban forests in the Los Angeles metropolitan area. Ecol Appl 21(3):661–677CrossRefGoogle Scholar
  67. Perrier A (1975) Etude physique de l’évapotranspiration dans les conditions naturelles. I. evaporation et bilan d’énergie des surface naturelles. Annals of Agronomy, 26, 1–18. II. Expression et paramètres donnant l’évapotranspiration réelle d’une surface mince. Annals of Agronomy, 26, 105–123. III. Evapotranspiration réelle et potentielle des couverts végétaux. Annals of Agronomy 26:229–243 (in French)Google Scholar
  68. Perrier A, Katerji N, Iier B (1980) Etude ‘in situ’ de l’evapotranspiration reele dune culture de ble. Agric Meteorol 21:295–311CrossRefGoogle Scholar
  69. Rana G, Katerji N, Mastrorilli M, El Moujabber M (1994) Evapotranspiration and canopy resistance of grass in a Mediterranean region. Theor Appl Climatol 50(1–2):61–71CrossRefGoogle Scholar
  70. Rana G, Katerji N (1998) A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60:141–149CrossRefGoogle Scholar
  71. Rana G, Katerji N, Mastrorilli M, El Moujabber M (1997a) A model for predicting actual evapotranspiration under soil water stress in a Mediterranean region. Theor Appl Climatol 56(1–2):45–55CrossRefGoogle Scholar
  72. Rana G, Katerji N, Mastrorilli M, El Moujabber M, Brisson N (1997b) Validation of a model of actual evapotranspiration for water stressed soybeans. Agric For Meteorol 86:215–224CrossRefGoogle Scholar
  73. Rana G, Katerji N, Mastrorilli M (1997c) Environmental and soil-plant parameters for modelling actual crop evapotranspiration under water stress conditions. Ecol Model 101:363–371CrossRefGoogle Scholar
  74. Rana G, Katerji N, Perniola M (2001) Evapotranspiration of sweet sorghum: a general model and multilocal validity in semi arid environmental conditions. Water Resour Res 37(12):3237–3246CrossRefGoogle Scholar
  75. Rana G, Katerji N, De Lorenzi F (2005) Measurement and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric For Meteorol 128(3–4):199–209CrossRefGoogle Scholar
  76. Rana G, Katerji N, Lazzara P, Ferrara RM (2012) Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: multiannual and local evaluations. Agric Water Manag 115:285–296CrossRefGoogle Scholar
  77. Rapisarda, C., Cocuzza, G.E.M. (Eds.), 2017. Integrated pest management in tropical regions. CABI, UK, 359 pp, ISBN 1780648006, 9781780648002Google Scholar
  78. Riikonen A, Järvi L, Nikinmaa E (2016) Environmental and crown related factors affecting street, tree transpiration in Helsinki, Finland. Urban Ecosyst 19:1693–1715.  https://doi.org/10.1007/s11252-016-0561-1 CrossRefGoogle Scholar
  79. Roberts SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat storage. J Appl Met Climat 45:1766–1780CrossRefGoogle Scholar
  80. Shi T, Guan D, Wang A, Wu J, Jin C, Han S (2008) Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrol Process 22(17):3431–3443CrossRefGoogle Scholar
  81. Shields CA, Tague CL (2012) Assessing the role of parameter and input uncertainty in ecohydrologic modeling: implications for a semi-arid and urbanizing coastal California catchment. Ecosystems 15:775–791.  https://doi.org/10.1007/s10021-012-9545-z CrossRefGoogle Scholar
  82. Schulze ED (1986) Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Ann Rev Plant Physiol 37:247–270CrossRefGoogle Scholar
  83. Seidel H, Schunk C, Matiu M, Menzel A (2016) Diverging drought resistance of scots pine provenances revealed by infrared thermography. Frontiers in Plant Science 7:Article 1247.  https://doi.org/10.3389/fpls.2016.01247 Google Scholar
  84. Spano D, Snyder RL, Sirca C, Duce P (2009) ECOWAT-A model for ecosystem evapotranspiration estimation. Agric For Meteorol 149(10):1584–1596.  https://doi.org/10.1016/j.agrformet.2009.04.011 CrossRefGoogle Scholar
  85. Stanghellini C, De Lorenzi F (1994) A comparison of soil- and canopy temperature-based methods for the early detection of water stress in a simulated patch of pasture. Irrig Sci 14:141–146CrossRefGoogle Scholar
  86. Symes P, Connellan G (2013) Water management strategies for urban trees in dry environments: lessons for the future. Arboricult Urban For 39:116–124Google Scholar
  87. Sutanto SJ, Wenninger J, Coenders-Gerrits AMJ, Uhlenbrook S (2012) Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrol Earth Syst Sci 16:2605–2616CrossRefGoogle Scholar
  88. Tardieu F, Katrerji N, Bethenod O (1990) Relation entre l’état hydrique du sol, le potentiel de base et d’autres indicateurs del a contrainte hydrique chez le mais. Agronomie 8:617–626CrossRefGoogle Scholar
  89. Vahmani P, Hogue TS (2014a) High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin. Hydrol Earth Syst Sci 18(12):4791–4806.  https://doi.org/10.5194/hess-18-4791-2014 CrossRefGoogle Scholar
  90. Vahmani P, Hogue TS (2014b) Incorporating an urban irrigation module into the Noah land surface model coupled with an urban canopy model. Journal of Hydrometeorology:140421133412009.  https://doi.org/10.1175/JHM-D-13-0121.1
  91. Waldo LI, Schumann AW (2009) Alternative methods for determining crop water status for irrigation of citrus groves. Proc Fla State Hort Soc 122:63–71Google Scholar
  92. Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in trees. Tree Physiol 18:499–512CrossRefGoogle Scholar
  93. Yoshida A, Tominaga K, Watatani S (1990–91) Field measurements on energy balance of an urban canyon in the summer season. Energy Build. 15–16:417–423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CREA Research Centre for Agriculture and EnvironmentBariItaly
  2. 2.CREA Research Centre for Forestry and WoodArezzoItaly

Personalised recommendations