Advertisement

Theoretical and Applied Climatology

, Volume 138, Issue 3–4, pp 1269–1295 | Cite as

Weighted multi-model ensemble projection of extreme precipitation in the Mediterranean region using statistical downscaling

  • Luzia KeuppEmail author
  • Elke Hertig
  • Irena Kaspar-Ott
  • Felix Pollinger
  • Christoph Ring
  • Heiko Paeth
  • Jucundus Jacobeit
Original Paper
  • 108 Downloads

Abstract

Projections of seasonal extreme precipitation changes in eight Mediterranean subregions between the end of the twentieth and the end of the twenty-first century are analyzed using weighted multi-model ensembles. Weights are based on the performance of predictor variables in the scope of statistical downscaling. Two indices of precipitation scarcity as well as two indices of heavy precipitation are downscaled from global climate model data of the Coupled Model Intercomparison Project phase 3 and 5 (CMIP3, CMIP5) multi-model ensembles, considering two emission scenarios each. Based on the performance with regard to observations of extreme precipitation as well as inter-model consistency, three weighting metrics are calculated and subsequently applied to each ensemble. While meteorological droughts are projected to increase in most cases, the tendency is less pronounced for heavy precipitation events and mostly points towards reduction. The weighting does not affect the multi-model mean changes, but induces a decrease of ensemble spread (although mostly not significant), implying a decrease of model uncertainty. As the ensemble and scenario considered have minor effect on the findings and also the differences between seasons and subregions are not marked, there is strong evidence for enhanced droughts in the Mediterranean region, implying major socio-economic and ecological consequences.

Keywords

Climate change Model weighting Precipitation extremes Mediterranean Statistical downscaling GLM CMIP3 CMIP5 

Notes

Acknowledgements

We acknowledge the respective modeling groups as well as the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Programme’s Working Group on Coupled Modelling (WGCM) for producing, coordinating, and making available the CMIP3 and CMIP5 multi-model datasets. We also acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). Further, NCEP-NCAR Reanalysis data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. Additionally, we appreciate the helpful comments of two anonymous reviewers.

Funding information

Financial support was provided by the DFG (German Research Foundation) within the project COMEPRO (Comparison of Metrics for Probabilistic Climate Change Projections of Mediterranean Precipitation) under contract PA 1194/10-1 and JA 831/11-1.

References

  1. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232.  https://doi.org/10.1038/nature01092 CrossRefGoogle Scholar
  2. Bartolomeu S, Carvalho M, Marta-Almeida M, Melo-Gonċalves P, Rocha A (2016) Recent trends of extreme precipitation indices in the Iberian Peninsula using observations and WRF model results. Phys Chem Earth Parts A/B/C 94:10–21.  https://doi.org/10.1016/J.PCE.2016.06.005 CrossRefGoogle Scholar
  3. Bolle HJ (2003) Climate, climate variability, and impacts in the Mediterranean Area: an overview. In: Mediterranean climate. Springer, Berlin, pp 5–86, DOI  https://doi.org/10.1007/978-3-642-55657-9_2, (to appear in print)
  4. Caldwell PM, Zelinka MD, Klein SA (2018) Evaluating emergent constraints on equilibrium climate sensitivity. J Climate 31(10):3921–3942.  https://doi.org/10.1175/JCLI-D-17-0631.1 CrossRefGoogle Scholar
  5. Cavazos T, Hewitson BC (2005) Performance of NCEP – NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Res 28(2):95–107.  https://doi.org/10.3354/cr028095 CrossRefGoogle Scholar
  6. Christensen J, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menėndez C, Rȧisȧnen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L (eds) Climate change 2007. The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, chap 8, Cambridge, pp 847–940Google Scholar
  7. Christensen JH, Krishna Kumar K, Aldrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson DB, Xie SP, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. University Press, CambridgeGoogle Scholar
  8. Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Philos Trans Series Math Phys Eng Sci 365(1857):1957–70.  https://doi.org/10.1098/rsta.2007.2068 CrossRefGoogle Scholar
  9. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski W, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker T, Qin D, Plattner G K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. chap. 12. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  10. Cornes R, Goodess C, Casanueva A, Coppola E, Dell ’aquila A, Dubois C, Frías MD, Gutiérrez JM, Herrera S (2013) Deliverable D3.7 Extremes: downscaling of percentiles and extremes events indicatorsGoogle Scholar
  11. Diffenbaugh NS, Giorgi F (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Clim Change 114(3-4):813–822.  https://doi.org/10.1007/s10584-012-0570-x CrossRefGoogle Scholar
  12. Drumond A, Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM (2017) Drought episodes in the climatological sinks of the Mediterranean moisture source: the role of moisture transport. Global Planet Change 151:4–14.  https://doi.org/10.1016/j.gloplacha.2016.12.004 CrossRefGoogle Scholar
  13. Duan Q, Phillips TJ (2010) Bayesian estimation of local signal and noise in multimodel simulations of climate change. J Geophys Res Atmos 115(18):D18123.  https://doi.org/10.1029/2009JD013654 CrossRefGoogle Scholar
  14. Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32(17):1–5.  https://doi.org/10.1029/2005GL023272 CrossRefGoogle Scholar
  15. Fahrmeir L, Kneib T, Lang S, Marx B (2013) Regression: models, methods and applications. Springer, BerlinCrossRefGoogle Scholar
  16. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker T, Qin D, Plattner G K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. chap 9. Cambridge University Press, Cambridge, pp 741–866Google Scholar
  17. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578.  https://doi.org/10.1002/joc.1556 CrossRefGoogle Scholar
  18. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) method. J Clim 15 (10):1141–1158.  https://doi.org/10.1175/15210.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 CrossRefGoogle Scholar
  19. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113(6):D06104.  https://doi.org/10.1029/2007JD008972 CrossRefGoogle Scholar
  20. Gómez-Hernández M, Drumond A, Gimeno L, Garcia-Herrera R (2013) Variability of moisture sources in the Mediterranean region during the period 1980-2000. Water Resour Res 49(10):6781–6794.  https://doi.org/10.1002/wrcr.20538 CrossRefGoogle Scholar
  21. Gómez-Navarro JJ, Montávez JP, Jerez S, Jiménez-Guerrero P, Zorita E (2012) What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys Res Lett 39(24):L24701.  https://doi.org/10.1029/2012GL054206 CrossRefGoogle Scholar
  22. Gutiérrez JM, Maraun D, Widmann M, Huth R, Hertig E, Benestad R, Roessler O, Wibig J, Wilcke R, Kotlarski S, San Martín D, Herrera S, Bedia J, Casanueva A, Manzanas R, Iturbide M, Vrac M, Dubrovsky M, Ribalaygua J, Pórtoles J, Räty O, Räisänen J, Hingray B, Raynaud D, Casado MJ, Ramos P, Zerenner T, Turco M, Bosshard T, Štěpánek P, Bartholy J, Pongracz R, Keller DE, Fischer AM, Cardoso RM, Soares PMM, Czernecki B, Pagé C (2018) An intercomparison of a large ensemble of statistical downscaling methods over Europe: results from the VALUE perfect predictor cross-validation experiment. International Journal of Climatology.  https://doi.org/10.1002/joc.5462
  23. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynam 37(1-2):407–418.  https://doi.org/10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  24. Haylock MR, Goodess CM (2004) Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24(6):759–776.  https://doi.org/10.1002/joc.1033 CrossRefGoogle Scholar
  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113 (D20):D20119.  https://doi.org/10.1029/2008JD010201 CrossRefGoogle Scholar
  26. Hertig E, Jacobeit J (2015) Considering observed and future nonstationarities in statistical downscaling of Mediterranean precipitation. Theor Appl Climatol 122(3-4):667–683.  https://doi.org/10.1007/s00704-014-1314-9 CrossRefGoogle Scholar
  27. Hertig E, Tramblay Y (2017) Regional downscaling of Mediterranean droughts under past and future climatic conditions. Global Planet Change 151:36–48.  https://doi.org/10.1016/j.gloplacha.2016.10.015 CrossRefGoogle Scholar
  28. Hertig E, Paxian A, Vogt G, Seubert S, Paeth H, Jacobeit J (2012) Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area. Meteorol Z 21(1):61–77.  https://doi.org/10.1127/0941-2948/2012/0271 CrossRefGoogle Scholar
  29. Hertig E, Seubert S, Paxian A, Vogt G, Paeth H, Jacobeit J (2014) Statistical modelling of extreme precipitation indices for the Mediterranean area under future climate change. Int J Climatol 34(4):1132–1156.  https://doi.org/10.1002/joc.3751 CrossRefGoogle Scholar
  30. Hertig E, Maraun D, Bartholy J, Pongracz R, Vrac M, Mares I, Gutiérrez JM, Wibig J, Casanueva A, Soares PMM (2018) Comparison of statistical downscaling methods with respect to extreme events over Europe: validation results from the perfect predictor experiment of the COST Action VALUE. International Journal of Climatology.  https://doi.org/10.1002/joc.5469
  31. IPCC (2012a) Glossary of terms. In: Field C, Barros V, Stocker T, Qin D, Dokken D, Ebi K, Mastrandrea M, Mach K, Plattner G K, Allen S, Tignor M, Midgley P (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 555–564Google Scholar
  32. IPCC (2012b) Summary for policymakers. In: Field C, Barros V, Stocker T, Qin D, Dokken D, Ebi K, Mastrandrea M, Mach K, Plattner G K, Allen S, Tignor M, Midgley P (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–22Google Scholar
  33. Jacobeit J (1993) Regionale Unterschiede im atmosphärischen Zirkulationsgeschehen bei globalen Klimaveränderungen. Die Erde 124:63–77Google Scholar
  34. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  35. Kaspar-Ott I, Hertig E, Kaspar S, Pollinger F, Ring C, Paeth H, Jacobeit J (2019) Weights for general circulation models from CMIP3/CMIP5 in a statistical downscaling framework and the impact on future Mediterranean precipitation. International Journal of Climatology.  https://doi.org/10.1002/joc.6045
  36. Kjellström E, Boberg F, Castro M, Christensen J, Nikulin G, Sänchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res 44(2-3):135–150.  https://doi.org/10.3354/cr00932 CrossRefGoogle Scholar
  37. Klein Tank AM, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Tech. Rep. 72 WMO World Climate Data and Monitoring Programme, Geneva, SwitzerlandGoogle Scholar
  38. Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler P, Hewitson B, Mearns L (2010a) Good practice guidance paper on assessing and combining multi model climate projections. IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, p 15Google Scholar
  39. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010b) Challenges in combining projections from multiple climate models. J Climate 23(10):2739–2758.  https://doi.org/10.1175/2009JCLI3361.1
  40. Knutti R, Sedläček J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 44(4):1909–1918.  https://doi.org/10.1002/2016GL072012 CrossRefGoogle Scholar
  41. La Jeunesse I, Cirelli C, Aubin D, Larrue C, Sellami H, Afifi S, Bellin A, Benabdallah S, Bird DN, Deidda R, Dettori M, Engin G, Herrmann F, Ludwig R, Mabrouk B, Majone B, Paniconi C, Soddu A (2016) Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci Total Environ 543:981–996.  https://doi.org/10.1016/j.scitotenv.2015.04.062 CrossRefGoogle Scholar
  42. Lavaysse C, Vrac M, Drobinski P, Lengaigne M, Vischel T (2012) Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario. Nat Hazards and Syst Sci 12(3):651–670.  https://doi.org/10.5194/nhess-12-651-2012 CrossRefGoogle Scholar
  43. Lutz K, Jacobeit J, Philipp A, Seubert S, Kunstmann H, Laux P (2012) Comparison and evaluation of statistical downscaling techniques for station-based precipitation in the Middle East. Int J Climatol 32 (10):1579–1595.  https://doi.org/10.1002/joc.2381 CrossRefGoogle Scholar
  44. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003.  https://doi.org/10.1029/2009RG000314 CrossRefGoogle Scholar
  45. Maraun D, Widmann M, Gutiërrez JM, Kotlarski S, Chandler RE, Hertig E, Wibig J, Huth R, Wilcke RA (2015) VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Fut 3(1):1–14.  https://doi.org/10.1002/2014EF000259 CrossRefGoogle Scholar
  46. Maraun D, Huth R, Gutiérrez JM, Martín DS, Dubrovsky M, Fischer A, Hertig E, Soares PMM, Bartholy J, Pongrácz R, Widmann M, Casado MJ, Ramos P, Bedia J (2017) The VALUE perfect predictor experiment: evaluation of temporal variability. International Journal of Climatology.  https://doi.org/10.1002/joc.5222
  47. Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. McCullagh PJ, Nelder JA (1989) Generalized linear models. Chapman & Hall/CRC, LondonCrossRefGoogle Scholar
  49. Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  50. Merkenschlager C, Hertig E, Jacobeit J (2017) Non-stationarities in the relationships of heavy precipitation events in the Mediterranean area and the large-scale circulation in the second half of the 20th century. Global Planet Change 151:108–121.  https://doi.org/10.1016/j.gloplacha.2016.10.009 CrossRefGoogle Scholar
  51. Monjo R, Gaitán E, Pórtoles J, Ribalaygua J, Torres L (2016) Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int J Climatol 36(2):757–769.  https://doi.org/10.1002/joc.4380 CrossRefGoogle Scholar
  52. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Technical Summary. IPCC Technical Meeting Report 19–21 September 2007. Genf: IPCC, NoordwijkerhoutGoogle Scholar
  53. Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41(1):128–134.  https://doi.org/10.1002/2013GL058055 CrossRefGoogle Scholar
  54. Nicholls N, Murray W (1999) Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3–6 June 1997 Breakout Group B: precipitation. Clim Change 42(1):23–29CrossRefGoogle Scholar
  55. Nuissier O, Joly B, Joly A, Ducrocq V, Arbogast P (2011) A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France. Q J Roy Meteorol Soc 137(660):1812–1827.  https://doi.org/10.1002/qj.866 CrossRefGoogle Scholar
  56. Paeth H, Vogt G, Paxian A, Hertig E, Seubert S, Jacobeit J (2017) Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Global Planet Change 151:144–151.  https://doi.org/10.1016/j.gloplacha.2016.03.003 CrossRefGoogle Scholar
  57. Paxian A, Hertig E, Vogt G, Seubert S, Jacobeit J, Paeth H (2014) Greenhouse gas-related predictability of regional climate model trends in the Mediterranean area. Int J Climatol 34(7):2293–2307.  https://doi.org/10.1002/joc.3838 CrossRefGoogle Scholar
  58. Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J Climate 20(16):4065–4095.  https://doi.org/10.1175/JCLI4175.1 CrossRefGoogle Scholar
  59. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2015) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4(1):4364.  https://doi.org/10.1038/srep04364 CrossRefGoogle Scholar
  60. Räisänen J, Ylhäisi JS (2012) Can model weighting improve probabilistic projections of climate change? Climate Dynam 39(7-8):1981–1998.  https://doi.org/10.1007/s00382-011-1217-8 CrossRefGoogle Scholar
  61. Randall D, Wood R, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer R, Sumi A, Taylor K (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L (eds) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. chap 8. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  62. Reichler T, Kim J, Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89(3):303–311.  https://doi.org/10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  63. Ring C, Mannig B, Pollinger F, Paeth H (2016) Uncertainties in the simulation of precipitation in selected regions of humid and dry climate. Int J Climatol 36(10):3521–3538.  https://doi.org/10.1002/joc.4573 CrossRefGoogle Scholar
  64. Ring C, Pollinger F, Kaspar-Ott I, Hertig E, Jacobeit J, Paeth H (2017) A comparison of metrics for assessing state-of-the-art climate models and implications for probabilistic projections of climate change. Climate Dynamics.  https://doi.org/10.1007/s00382-017-3737-3
  65. Rodrigo FS (2010) Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int J Climatol 30(10):1512–1525.  https://doi.org/10.1002/joc.1987 CrossRefGoogle Scholar
  66. Sánchez E, Romera R, Gaertner MA, Gallardo C, Castro M (2009) A weighting proposal for an ensemble of regional climate models over Europe driven by 1961-2000 ERA40 based on monthly precipitation probability density functions. Atmos Sci Lett 10(4):241–248.  https://doi.org/10.1002/asl.230 CrossRefGoogle Scholar
  67. Sanderson BM, Wehner M, Knutti R (2016) Skill and independence weighting for multi-model.  https://doi.org/10.5194/gmd-2016-285
  68. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X, Rusticucci M, Semenov V, Alexander LV, Allen S, Benito G, Cavazos T, Clague J, Conway D, Della-Marta PM, Gerber M, Gong S, Goswami BN, Hemer M, Huggel C, van den Hurk B, Kharin VV, Kitoh A, Tank AMK, Li G, Mason S, McGuire W, van Oldenborgh GJ, Orlowsky B, Smith S, Thiaw W, Velegrakis A, Yiou P, Zhang T, Zhou T, Zwiers FW (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field C, Barros V, Stocker T, Qin D, Dokken D, Ebi K, Mastrandrea M, Mach K, Plattner G K, Allen S, Tignor M, Midgley P (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. chap 3. Cambridge University Press, Cambridge, pp 109–230, DOI  https://doi.org/10.1017/CBO9781139177245.006, (to appear in print)
  69. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118 (4):1716–1733.  https://doi.org/10.1002/jgrd.50203
  70. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res: Atmos 118(6):2473–2493.  https://doi.org/10.1002/jgrd.50188
  71. Stephens GL, L’Ecuyer T, Forbes R, Gettelmen A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res: Atmos 115(D24):D24211.  https://doi.org/10.1029/2010JD014532 CrossRefGoogle Scholar
  72. Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Climate 19(6):916–934.  https://doi.org/10.1175/JCLI3672.1 CrossRefGoogle Scholar
  73. Tatli H, Nüzhet Dalfes H, Sibel Menteş C (2004) A statistical downscaling method for monthly total precipitation over Turkey. Int J Climatol 24(2):161–180.  https://doi.org/10.1002/joc.997 CrossRefGoogle Scholar
  74. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485– 498CrossRefGoogle Scholar
  75. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A: Math Phys Eng Sci 365(1857):2053–2075.  https://doi.org/10.1098/rsta.2007.2076 CrossRefGoogle Scholar
  76. Tebaldi C, Mearns LO, Nychka D, Smith RL (2004) Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophys Res Lett 31(24):L24213.  https://doi.org/10.1029/2004GL021276 CrossRefGoogle Scholar
  77. Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10(5):1037–1050.  https://doi.org/10.5194/nhess-10-1037-2010 CrossRefGoogle Scholar
  78. Tramblay Y, Badi W, Driouech F, El Adlouni S, Neppel L, Servat E (2012) Climate change impacts on extreme precipitation in Morocco. Global Planet Change 82-83:104–114.  https://doi.org/10.1016/j.gloplacha.2011.12.002 CrossRefGoogle Scholar
  79. Trenberth KE, Dai A, Rasmussen RM, Parsons DB, Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217.  https://doi.org/10.1175/BAMS-84-9-1205 CrossRefGoogle Scholar
  80. Trenberth K, Jones P, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick J, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. chap 3. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  81. Trigo RM, Palutikof JP, Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 14(23):4422–4446.  https://doi.org/10.1175/1520-0442(2001)014<4422:PSOIAC>2.0.CO;2 CrossRefGoogle Scholar
  82. Vrac M, Yiou P (2010) Weather regimes designed for local precipitation modeling: application to the Mediterranean basin. J Geophys Res Atmos 115(12):D12103.  https://doi.org/10.1029/2009JD012871 CrossRefGoogle Scholar
  83. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  84. von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteorol Z 4(2):72–80.  https://doi.org/10.1127/metz/4/1992/72 CrossRefGoogle Scholar
  85. von Storch H, Zorita E, Cubasch U, von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6(6):1161–1171.  https://doi.org/10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2 CrossRefGoogle Scholar
  86. Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the intergovernmental panel on climate change, available from the DDC of IPCC TGCIA, 27Google Scholar
  87. Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Climate 23(15):4175–4191.  https://doi.org/10.1175/2010JCLI3594.1 CrossRefGoogle Scholar
  88. Wenzel S, Cox PM, Eyring V, Friedlingstein P (2014) Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models. Geophys Res Biogeosci 119:794–807.  https://doi.org/10.1002/2013JG002591 CrossRefGoogle Scholar
  89. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic PressGoogle Scholar
  90. Xoplaki E, González-Rouco J F, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynam 23(1):63–78.  https://doi.org/10.1007/s00382-004-0422-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geography and GeologyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of GeographyUniversity of AugsburgAugsburgGermany

Personalised recommendations