Spatial distribution of soil moisture index across Nepal: a step towards sharing climatic information for agricultural sector

  • Rocky TalchabhadelEmail author
  • Ramchandra Karki
  • Mahesh Yadav
  • Manisha Maharjan
  • Anil Aryal
  • Bhesh Raj Thapa
Original Paper


The agro-climatic zoning provides valuable information for crop suitability mapping in order to optimize the yield. Despite its huge importance, such studies are extremely lacking in Nepal. This study attempts to classify the agro-climates of Nepal using a climate data of recent 30 years (1986–2015) period from a large number of meteorological stations distributed across the country (75 stations for the first time). Climate data at station location is interpolated in high spatial resolution considering elevation as one of the dominant factors controlling the spatial variability of climate fields in mountains. The agro-climatic classification includes modified Thornthwaite’s approach based on soil moisture index (SMI). The negative SMI values represent dry and arid whereas positive values represent the wet and humid environment. SMI > 100% represents perhumid agro-climate. Our results show the largely similar distribution of annual and monsoonal SMI, suggesting the dominance of monsoon SMI on annual. Based on the annual SMI indices, around 60% of areal coverage of the country falls under humid environment. The presented seasonal and spatial distribution maps of SMI can be helpful to assess the needs of the irrigational facility, choice of crops, and their rotations, and finally to design cropping calendar. The practitioners, researchers, and decision/policymakers can benefit from these tools.



The authors would like to thank the DHM, Government of Nepal, for the permission to use meteorological data.

Compliance with ethical standards

Conflicts of interests

The authors declare no conflict of interest.


  1. Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2013) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112(1):99–111. CrossRefGoogle Scholar
  2. Aparecido LE d O, Rolim G d S, Richetti J, de Souza PS, Johann JA (2016) Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciênc Agrotecnol 40(4):405–417. CrossRefGoogle Scholar
  3. Basalirwa CPK (1995) Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. Int J Climatol John Wiley & Sons, Ltd. 15(10):1161–1177. CrossRefGoogle Scholar
  4. Camargo AP (1991) Classificação climática para zoneamento de aptidão agroclimática. Rev Bras Agrometeorol 8:126–131Google Scholar
  5. DHM/GoN (2013) Agro-climatic atlas of Nepal. Department of Hydrology and Meteorology, KathmanduGoogle Scholar
  6. DHM/GoN (2015) Study of Climate and climatic variation over Nepal. Department of Hydrology and Meteorology, KathmanduGoogle Scholar
  7. Feddema JJ (1994) Evaluation of terrestrial climate variability using a moisture index. Publications in climatology. Charles Warren Thornthwaite Associates, Laboratory of Climatology XLVII(1)Google Scholar
  8. Feddema JJ (2005) A revised Thornthwaite-type global climate classification. Phys Geogr 26(6):442–466. CrossRefGoogle Scholar
  9. Flohn H (1950) Neue Anschauungen über die allgemeine zirkulation der atmosphareund ihre klimatische bedeutung. Erdkunde 4(141–162)Google Scholar
  10. Forsythe N, Blenkinsop S, Fowler HJ (2015) Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources. Earth Syst Dyn 6(1):311–326. CrossRefGoogle Scholar
  11. Geiger R (1954) Klassifikation der klimate nach W. Köppen. In: Bartels J and Bruggencate P (eds) Landolt- Börnstein – Zahlenwerte und Funktionen aus physik, chemie, astronomie, Geophysik und Technik, Alte Serie 3:603–607Google Scholar
  12. Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Ko ¨ ppen climate classification. Geophys Res Lett 33:1–5. CrossRefGoogle Scholar
  13. Grundstein A (2009) Evaluation of climate change over the continental United States using a moisture index. Climate Change 93:103–115. CrossRefGoogle Scholar
  14. Gumma MK, Gauchan D, Nelson A, Pandey S, Rala A, Asia S (2011) Agriculture , ecosystems and environment temporal changes in rice-growing area and their impact on livelihood over a decade: a case study of Nepal Far-Western. Agriculture, Ecosystems and Environment.” Elsevier B.V. 142(3–4):382–392. CrossRefGoogle Scholar
  15. Guofeng ZHU, Dahe QIN, Huali T, Yuanfeng LIU, Jiafang LI, Dongdong C, Kai W (2016) Variation of Thornthwaite moisture index in Hengduan Mountains, China. Chin Geogr Sci 26(5):687–702. CrossRefGoogle Scholar
  16. HMG (1975) Mechidekhi Mahakali (I-IV Volumes). Department of Information, Ministry of CommunicationGoogle Scholar
  17. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San JoseGoogle Scholar
  18. Høst G (1999) Kriging by local polynomials. Comput Stat Data Anal 29(3):295–312CrossRefGoogle Scholar
  19. Huke RE (1982) Agroclimatic and dry-season maps of South, Southeast, and East Asia. Manila, PhilippinesGoogle Scholar
  20. ICIMOD (1996) Climatic and hydrological atlas of Nepal. Kathmandu, NepalGoogle Scholar
  21. Jha S, Karn A (2001) Climatic analogues for the administrative districts of Nepal. Tribhuvan Univ J 55–64Google Scholar
  22. Karki R, Talchabhadel R, Aalto J, Baidya SK (2016) New climatic classification of Nepal. Theor Appl Climatol 125(3–4):799–808. CrossRefGoogle Scholar
  23. Karki R, Hasson S, Schickhoff U, Scholten T (2017) Rising precipitation extremes across Nepal. Climate 5(4):1–25. Google Scholar
  24. Köppen W (1900) Versuch einer Klassifikation der Klimate, Vorzugsweise nach ihren Beziehungen zur Pflanzenwelt [Attempted climate classification in relation to plant distributions]. Geogr Z 6(593–611):657–679Google Scholar
  25. Köppen W (1918) Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf (classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr Mitt 64(193–203):243–248Google Scholar
  26. Köppen W (1936) Das geographische System der Klimate. Handb Klimatol (c):7–30.
  27. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. CrossRefGoogle Scholar
  28. Kyuma K (1971) Climate of south and Southeast Asia according to Thornthwaite’s classification scheme. Southeast Asian Stud 9(1):136–158Google Scholar
  29. Li J, Sun X (2015) Valuation of changes of Thornthwaite moisture index in Victoria. Aust Geomech 50(3):39–49Google Scholar
  30. Nayava JL (1975) Climates of Nepal. Himal Rev VII:9–12Google Scholar
  31. Nayava JL (1980) Rainfall in Nepal. The Himalayan Review. Nepal Geological Society 12Google Scholar
  32. Papadakis J (1975) Climates of the world and their agricultural potentialities. Eigenverl. D. VerfGoogle Scholar
  33. Practical Action Nepal (2009) Temporal and Spatial Variabilty of Climate Change Over Nepal (1976–-2005). Practical Action Nepal, KathmanduGoogle Scholar
  34. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  35. Reddy SJ, Reddy RS (1973) A new method of estimation of water balance. International Symposium On tropical Meteoroligical Meeting. American Meteorological Society, Nairobi, pp 277–280Google Scholar
  36. Roohi R, Ahmad S, Ashraf A (2002) Characterization and classification of agro-climates of Pakistan. Pak J Agric Res 245–254Google Scholar
  37. Shrestha ML (2000) Interannual variation of summer monsoon rainfall over Nepal and its relation to southern oscillation index. Meteorog Atmos Phys 75:21–28. CrossRefGoogle Scholar
  38. Stern H, DeHoedt G (1999) Objective classification of Australian climates. 8th Conf. on Aviation, Range and Aerospace Meteorology. American Meteological Society, Dallas, pp 87–91Google Scholar
  39. Sun X (2015) The impact of climate as expressed by Thornthwaite moisture index on residential footing design on expansive soil in Australia. RMIT UniversityGoogle Scholar
  40. Talchabhadel R, Karki R, Parajuli B (2017) Intercomparison of precipitation measured between automatic and manual precipitation gauge in Nepal. Measurement 106:264–273. CrossRefGoogle Scholar
  41. Talchabhadel R, Karki R, Thapa BR, Maharjan M, Parajuli B (2018) Spatio-temporal variability of extreme precipitation in Nepal. Int J Climatol 38:4296–4313. CrossRefGoogle Scholar
  42. Thornthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev XXXI:633–655CrossRefGoogle Scholar
  43. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. CrossRefGoogle Scholar
  44. Wang X, Feng Y (2010) RHtestsV3 UserManual, Climate Research Division, Atmospheric Science and Technology Directorate Science and Technology Branch. Environment CanadaGoogle Scholar
  45. Zaman QU, Rasul G (2004) Agro-climatic classification of Pakistan. Q Sci Vis 9(1974):59–66Google Scholar
  46. Zhang X, Yang F (2004) RClimDex (1.0) User Manual, Climate Research Branch. Environment CanadaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Disaster Prevention Research InstituteKyoto UniversityKyotoJapan
  2. 2.Department of Hydrology and MeteorologyGovernment of NepalKathmanduNepal
  3. 3.Institute of GeographyUniversity of HamburgHamburgGermany
  4. 4.Department of IrrigationGovernment of NepalKathmanduNepal
  5. 5.Department of Environmental EngineeringKyoto UniversityKyotoJapan
  6. 6.Interdisciplinary Centre for River Basin EnvironmentUniversity of YamanashiKofuJapan
  7. 7.International Water Management InstitutePatanNepal

Personalised recommendations