Advertisement

Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography

  • Aldo S. Moya-ÁlvarezEmail author
  • Daniel Martínez-Castro
  • Shailendra Kumar
  • René Estevan
  • Yamina Silva
Original Paper
  • 36 Downloads

Abstract

The main objective of the research is to evaluate the response of the WRF model to the domains and resolutions that are used in complex orographic conditions like the central Andes of Peru for the forecast of short- and medium-term rainfall. To do this, the model was configured with four domains and the verifications were made using data from meteorological stations located within the study area and TRMM data. Experiments were conducted for nine 10-day periods of rainy days, five cases of extreme rainfall, and one event with hail fall on the region. In general, the model overestimates precipitation, but, in the five cases of extreme rainfall, and in the case of the hailstorm, underestimation was observed, so it is not accurate to assert in an absolute way that WRF overestimates precipitation in the study region. It was observed that the 3-km domain simulate effectively the accumulated rainfall, while the 0.75-km domain reproduces better the process at local scale. The results in the domain with the coarsest resolution of 18 km showed the lowest skill in simulating rainfall compared to the higher resolutions. Thus, it is concluded that an increase of resolution leads to an improvement of the results of rainfall forecast in the region and the structure of clouds systems. At the same time, the domains with resolutions of 18 km showed poorer results.

Notes

Acknowledgments

Present study comes under the project “MAGNET-IGP: Strengthening the research line in physics and microphysics of the atmosphere (Agreement N° 010-2017-FONDECYT)”. I would like to thank the CONCYTEC, Peru, for financial support and Inter-American Institute for Cooperation on Agriculture (IICA) for administrative support. This work was done using computational resources, HPC-Linux Cluster, from Laboratorio de Dinámica de Fluidos Geofísicos Computacionales at Instituto Geofísico del Perú (grants 101-2014-FONDECYT, SPIRALES2012 IRD-IGP, Manglares IGP-IDRC, PP068 program_. I would like to thank NCEP for FNL analysis data and SENAMHI for observational precipitation data.

References

  1. Aceituno P (1989) On the functioning of the southern oscillation in the South American, sector Part II Upper air circulation. J Clim 4:341–355 https://journals.ametsoc.org/doi/abs/10.1175/1520-0442%281989%29002%3C0341%3AOTFOTS%3E2.0.CO%3B2. Accessed 18 April 2018CrossRefGoogle Scholar
  2. Alfaro L (2014) Estimación de Umbrales de Precipitaciones Extremas para la emisión de Avisos Meteorológicos. Nota Técnica 001-SENAMHI-DGM. https://issuu.com/senamhi_peru/docs/nota_t__cnica_001-_2014_umbrales_de. Accessed 20 October 2018.
  3. Barrett BS, Garreaud R (2009) Falvey effect of the Andes cordillera on precipitation from a midlatitude cold front. Mon Weather Rev 137:3092–3109.  https://doi.org/10.1175/2009MWR2881.1 CrossRefGoogle Scholar
  4. Beljaars ACM (1994) The parameterization of surface fluxes in large-scale models under free convection, quart. J Roy Meteor Soc 12:255–270.  https://doi.org/10.1002/qj.49712152203 Google Scholar
  5. Brooks HE, Doswell CA (1993) New technology and numerical weather prediction—a wasted opportunity? Weather 48:173–177.  https://doi.org/10.1002/j.1477-8696.1993.tb05877.x CrossRefGoogle Scholar
  6. Brooks HE, Maddox RA (1992) On the use of mesoscale and cloud-scale models in operational forecasting. Wea Forecasting 7:120–132CrossRefGoogle Scholar
  7. Chavez SP, Takahashi K (2017) Orographic rainfall hot spots in the Andes- Amazon transition according to the TRMM precipitation radar and in situ data. J of Geophysical Research, AGU PUBLICATIONS: 5870–5882. doi: https://doi.org/10.1002/2016JD026282
  8. Colle BA, Mass CF (2000) High-resolution observations and numerical simulations of easterly gap flow through the Strait of Juan de Fuca on 9–10 December 1995. Mon Weather Rev 128:2398–2422.  https://doi.org/10.1175/1520-0493(2000)128<2398:HROANS>2.0.CO;2 CrossRefGoogle Scholar
  9. Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87:367–374.  https://doi.org/10.1175/1520-6640493(1959)087<0367:AOOAS>2.0.CO;2
  10. Davis C, Warner T, Astling E, Bowers J (1999) Development and application of an operational, relocatable, mesogamma-scale weather analysis and forecasting system. Tellus 51A:710–727.  https://doi.org/10.3402/tellusa.v51i5.14490
  11. Dimri AP (2006) Impact of horizontal model resolution and orography on the simulation of a western disturbance and its associated precipitation. Meteorol Appl 11:115–127.  https://doi.org/10.1017/S1350482704001227 CrossRefGoogle Scholar
  12. Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant fluxlayer. Quart J Roy Meteor Soc 96:715–721 http://www.climatexchange.nl/projects/alteddy/papers/Dyer-1974.pdf. Accessed 25 April 2018CrossRefGoogle Scholar
  13. Ebert EE (2008) Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol Appl 15:51–64.  https://doi.org/10.1002/met.25 CrossRefGoogle Scholar
  14. Farr TG, Rosen PA, Caro E (2007) The shuttle radar topography mission. Rev Geophys 45. doi: https://doi.org/10.1029/2005RG000183
  15. Garreaud R (2009) The Andes climate and weather. Adv Geosci 22:3–11 https://search.proquest.com/openview/f83053d5f143c39d384491d09031964a/1?pq-origsite=gscholar&cbl=105749. Accessed 04 May 2018CrossRefGoogle Scholar
  16. Gesch DB, Verdin KL, Greenlee SK (1999) New land surface digital elevation model covers the earth: Eos, transactions. Am Geophys Union 6:69–70 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/99EO00050. Accessed 04 May 2018CrossRefGoogle Scholar
  17. González Y, Mesquita M (2015) Numerical simulations of the 1 may 2012 deep convection event over Cuba: sensitivity to cumulus and microphysical schemes in a high-resolution model. Adv Meteorol 2015(2015):16.  https://doi.org/10.1155/2015/973151 Google Scholar
  18. Goody RM, Yung YL (1995) Atmospheric radiation: theoretical basis. Oxford University Press, https://www.amazon.com/Atmospheric-Radiation-Theoretical-R-Goody/dp/0195102916. Accessed 25 April 2018
  19. Grell GA, Freitas SR (2014) A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos Chem Phys 14:5233–5250.  https://doi.org/10.5194/acp-14-5233-2014 CrossRefGoogle Scholar
  20. Hong S-Y, Lim J-O (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42:129–151 http://www2.mmm.ucar.edu/wrf/users/phys_refs/MICRO_PHYS/WSM6.pdf. Accessed 04 May 2018Google Scholar
  21. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin J, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55.  https://doi.org/10.1175/JHM560.1
  22. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long–lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103 https://pdfs.semanticscholar.org/f644/9780bfc350073163fcfbe52297b56afbcd2f.pdf. Accessed 03 May 2018CrossRefGoogle Scholar
  23. Jiménez PA, Dudhia J, González-Rouco JF, Montávez JP, García-Bustamante E, Navarro J, Vilà-Guerau de Arellano J, Muñoz-Roldán A (2013) An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns. J Geophys Res 118:7651–7669.  https://doi.org/10.1002/jgrd.50585 Google Scholar
  24. Junquas C, Takahashi K, Condom T, Espinosa JC, Chavez S, Sicart JE, Lebel T (2017) Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the Central Andes. Clim Dyn 50:1–23.  https://doi.org/10.1007/s00382-017-3858-8 Google Scholar
  25. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  26. Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Adler RF, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson WS, Zipser E, Smith EA, Wilheit TT, North G, Krishnamurti T, Nakamura K (2000) The status of the tropical rainfall measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982.  https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
  27. Lafore J, Moncrieff MW (1989) A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J Atmos Sci 46:521–544Google Scholar
  28. Martínez AG, Núñez E, Silva Y, Takahashi K, Trasmonte G, Mosquera K, Lagos P (2006) Vulnerability and adaptation to climate change in the Peruvian Central Andes. Results of a pilot study, international conference on southern hemisphere meteorology and oceanography (ICSHMO), 8, Foz do Iguac¸u. Proceedings, S˜ao Jos’e dos Campos, INPE, CD-ROM ISBN 85-17-00023-4: 297–305. http://www.met.igp.gob.pe/publicaciones/2000_2007/V&AMantaro.pdf. Accessed 03 May 2018
  29. Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? The Results of Two Years of Real-Time Numerical Weather Prediction over the Pacific Northwest. Bull Amer Meteor Soc 83:407–430.  https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2 CrossRefGoogle Scholar
  30. McQueen JT, Draxler RR, Rolph GD (1995) Influence of grid size and terrain resolution on wind field predictions from an operational mesoscale model. J Appl Meteorol 34:2166–2181CrossRefGoogle Scholar
  31. Mercader J, Codina B, Sairouni A, Cunillera J (2010) Resultados del modelo meteorológico WRF-ARW sobre Cataluña, utilizando diferentes parametrizaciones de la convección y la microfísica de nubes. Tethys 7:77–89.  https://doi.org/10.3369/tethys.2010.7.07 Google Scholar
  32. Mlawer ES, Taubman P, Brown M et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682.  https://doi.org/10.1029/97JD00237 CrossRefGoogle Scholar
  33. Mölg T, Kaser G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J Geophys Res 116:D16101.  https://doi.org/10.1029/2011JD015669 CrossRefGoogle Scholar
  34. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev 137:991–1007.  https://doi.org/10.1175/2008MWR2556.1 CrossRefGoogle Scholar
  35. Moya-Álvarez AS, Martínez-Castro D, Flores JL, Silva Y (2018a) Sensitivity study on the influence of parameterization schemes in WRF_ARW model on short- and medium-range precipitation forecasts in the Central Andes of Peru. Adv Meteorol 2018:1–16.  https://doi.org/10.1155/2018/1381092 CrossRefGoogle Scholar
  36. Moya-Álvarez AS, Gálvez J, Holguín A, Estevan R, Kumar S, Villalobos E, Martínez-Castro D, Silva Y (2018b) Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru. Atmosphere 9:362.  https://doi.org/10.3390/atmos9090362 CrossRefGoogle Scholar
  37. Orr A, Listowski C, Cottet M (2017) Sensitivity of simulated summer monsoonal precipitation in Langtang Valley, Himalaya, to cloud microphysics schemes in WRF. J Geophys Res 122:6298–6318.  https://doi.org/10.1002/2016JD025801 Google Scholar
  38. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layerm. J Appl Meteorol 9:857–861 http://journals.ametsoc.org/doi/pdf/10.1175/1520-0450(1970)009%3C0857:TMROWS%3E2.0.CO%3B2. Accessed 18 April 2018CrossRefGoogle Scholar
  39. Rajeevan M, Kesarkar A, Thampi SB, Rao TN, Radhakrishna B, Rajasekhar M (2010) Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Ann Geophys 28:603–619.  https://doi.org/10.5194/angeo-28-603-2010 CrossRefGoogle Scholar
  40. Rodriguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 3:249–260.  https://doi.org/10.14358/PERS.72.3.249 CrossRefGoogle Scholar
  41. Rotunno R, Klemp JB, Weisman ML (1988) A theory for strong, long-lived squall lines. J Atmos Sci 45:463–485.  https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2 CrossRefGoogle Scholar
  42. Shrestha RK, Connolly PJ, Gallagher MW (2017) Sensitivity of WRF cloud microphysics to simulations of a convective storm over the Nepal Himalayas. Open Atmos Sci J 11:29–43.  https://doi.org/10.2174/1874282301711010029 CrossRefGoogle Scholar
  43. Silva Y, Takahashi K, Chávez R (2008) Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv Geosci 14:261–264 https://hal-insu.archives-ouvertes.fr/hal-00297108/document. Accessed 13 April 2018CrossRefGoogle Scholar
  44. Skamarock W, Klemp J, Dudhia, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN–468+STR. National Center for Atmospheric Research (NCAR), mesoscale and microscale meteorology division, Boulder, Colorado, USA doi: https://doi.org/10.5065/D68S4MVH
  45. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction: 11–15. https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm. Accessed 02 May 2018
  46. Viale M, Norte FA (2009) Strong cross-barrier flow under stable conditions producing intense winter orographic precipitation: a case study over the subtropical Central Andes. Weather Forecast 24:1009–1031 http://www.academia.edu/4105953/Strong_Cross Barrier_Flow_under_Stable_Conditions_Producing_Intense_Winter_Orographic_Precipitation_A_Cae_Study_over_the_Subtropical_Central_Andes. Accessed 04 May 2018CrossRefGoogle Scholar
  47. Vuille M, Kaser G, Juen I (2008) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Chang 62:14–28.  https://doi.org/10.1016/j.gloplacha.2007.11.0039 CrossRefGoogle Scholar
  48. Wang PK (2013) Physics and dynamics of clouds and precipitation. Cambridge University Press, 452. http://assets.cambridge.org/97811070/05563/frontmatter/9781107005563_frontmatter.pdf. Accessed 04 May 2018
  49. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Quart J Roy Meteor Soc 96:67–90.  https://doi.org/10.1002/qj.49709640708 CrossRefGoogle Scholar
  50. Weckwerth TM, Bennett IJ, Jay Miller L, Van Baelen J, Di Girolamo P, Blyth AM, Hertneky TJ (2014) An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon Weather Rev 142:2687–2708.  https://doi.org/10.1175/MWR-D-13-00216.1 CrossRefGoogle Scholar
  51. Weisman ML, Shamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon-Wea Rev 125:527–548.  https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2 CrossRefGoogle Scholar
  52. White GB, Paegle J, Steenburgh WJ, Horel JD, Swanson RT, Cook LK, Onton DJ, Miles JG (1999) Short-term forecast validation of six models. Wea Forecasting 14:84–108.  https://doi.org/10.1175/1520-0434(1999)014<0084:STFVOS>2.0.CO;2 CrossRefGoogle Scholar
  53. Yu N, Barthel C, Plu M (2014) Evaluating intense precipitation in high-resolution numerical model over a tropical island: impact of model horizontal resolution. Nat Hazards Earth Syst Sci 2:999–1032.  https://doi.org/10.5194/nhessd-2-999-2014 CrossRefGoogle Scholar
  54. Zhang D, Anthes RA (1982) A high–resolution model of the planetary boundary layer–sensitivity tests and comparisons with SESAME–79 data. J Appl Meteorol 21:1594–1609.  https://doi.org/10.1175/1520-0450(1982)021<594:AHRMOT>2.0.CO;2

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Geofísico del PerúLimaPeru
  2. 2.Instituto de Meteorología de CubaLa HabanaCuba

Personalised recommendations