Advertisement

Daily characteristics of Central African rainfall in the REMO model

  • Alain T. TamoffoEmail author
  • Derbetini A. Vondou
  • Wilfried M. Pokam
  • Andreas Haensler
  • Zéphirin D. Yepdo
  • Thierry C. Fotso-Nguemo
  • Lucie A. Djiotang Tchotchou
  • Robert Nouayou
Original Paper
  • 32 Downloads

Abstract

In this paper, daily characteristics of the Central Africa rainfall are assessed using the regional model REMO in the framework of contributions to the CORDEX-Africa project. The model is used to dynamically downscale two global climate models (MPI-ESM-LR and EC-EARTH) for the present (1981–2005) and future (2041–2065, 2071–2095) climate under the Representative Concentration Pathway (RCP) 2.6, 4.5, and 8.5 emission scenarios. A substantial spatio-temporal variability of the daily precipitation characteristics is obtained, as well as varying inferences for individual indices. For the present days, both REMO’s runs capture reasonably well the mean seasonal rainfall, the frequency of wet days, the threshold of extreme rainfall, and the cumulative frequency of daily rainfall. The model better simulates the frequency of rainy days than their intensity. It is found that origins of model biases differ as a function of regions. Over the continent, boundary conditions tend to influence the spatial distribution of rainfall whereas over oceanic and coastal regions, REMO’s physics seems to dominate over the boundary forcing. The projected frequency of wet days shows a decrease along the twenty-first century over most part of the continent. Throughout the century, all scenarios of REMO decrease the rate of rainfall with increasing intensity, and which will be noticeable in the Sahelian region at late twenty-first century. Furthermore, the extreme event thresholds decrease over Sahelian regions and increase along the coastal regions.

Notes

Acknowledgements

The REMO datasets were obtained from the Climate Service Center Germany (GERICS) in Hamburg through the project “Climate Change Scenarios for the Congo Basin.” The authors would like to thank data providers. This work is part of the International Joint Laboratory’s research “Dynamics of Land Ecosystems in Central Africa: A Context of Global Changes” (IJL DYCOCA/LMI DYCOFAC). Our gratitude is expressed to the anonymous reviewer for their constructive and useful suggestions.

References

  1. Abiodun BJ, Abba Omar S, Lennard C, Jack C (2015) Using regional climate models to simulate extreme rainfall events in the western cape, South Africa. Int J Clin 36(2):689–705.  https://doi.org/10.1002/joc.4376 CrossRefGoogle Scholar
  2. Aloysius N, Saiers J (2017) Simulated hydrologic response to projected changes in precipitation and temperature in the congo river basin. Hydrol Earth Syst Sci 21(8):4115–4130.  https://doi.org/10.5194/hess-21-4115-2017. https://www.hydrol-earth-syst-sci.net/21/4115/2017/ CrossRefGoogle Scholar
  3. Aloysius NR, Justin S, SJ E, Haibin L, We F (2015) Evaluation of historical and future simulations of precipitation and temperature in central africa from cmip5 climate models. J Geophys Res Atmos 121(1):130–152.  https://doi.org/10.1002/2015JD023656 CrossRefGoogle Scholar
  4. Bechtold P, Kohler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ecmwf model: From synoptic to decadal time-scales. Q J Roy Meteorol Soc 134(634):1337–1352.  https://doi.org/10.1002/qj.289 CrossRefGoogle Scholar
  5. Birkett C (2000) Synergistic remote sensing of lake chad: Variability of basin inundation. Remote Sens Environ 72(2):218–236.  https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  6. Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the california region. Clim Chang 87(1):21–42.  https://doi.org/10.1007/s10584-007-9377-6 CrossRefGoogle Scholar
  7. Coppola E, Giorgi F, Raffaele F, Fuentes-Franco R, Giuliani G, LLopart-Pereira M, Mamgain A, Mariotti L, Diro GT, Torma C (2014) Present and future climatologies in the phase i crema experiment. Clim Chang 125(1):23–38.  https://doi.org/10.1007/s10584-014-1137-9 CrossRefGoogle Scholar
  8. Creese A, Washington R (2016) Using qflux to constrain modeled Congo basin rainfall in the cmip5 ensemble. J Geophys Res Atmos 121(22):13,415–13,442.  https://doi.org/10.1002/2016JD025596 CrossRefGoogle Scholar
  9. Creese A, Washington R (2018) A process-based assessment of cmip5 rainfall in the Congo basin: the September-November rainy season. J Clim 31(18):7417–7439.  https://doi.org/10.1175/JCLI-D-17-0818.1 CrossRefGoogle Scholar
  10. Diallo I, Sylla M, Giorgi F, Gaye A, Camara M (2012) Multimodel gcm-rcm ensemble-based projections of temperature and precipitation over West Africa for the early 21st century. Int J Geophys 2012:1–19.  https://doi.org/10.1155/2012/972896. http://downloads.hindawi.com/journals/ijgp/2012/972896.pdf CrossRefGoogle Scholar
  11. Diallo I, Giorgi F, Deme A, Tall M, Mariotti L, Gaye AT (2016) Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century. Clim Dyn 47 (12):3931–3954.  https://doi.org/10.1007/s00382-016-3052-4 CrossRefGoogle Scholar
  12. Dosio A, Panitz HJ, Schubert-Frisius M, Lüthi D (2015) Dynamical downscaling of cmip5 global circulation models over cordex-africa with cosmo-clm: evaluation over the present climate and analysis of the added value. Clim Dyn 44(9):2637–2661.  https://doi.org/10.1007/s00382-014-2262-x CrossRefGoogle Scholar
  13. Endris HS, Lennard C, Hewitson B, Dosio A, Nikulin G, Panitz HJ (2016) Teleconnection responses in multi-gcm driven cordex rcms over eastern africa. Clim Dyn 46 (9):2821–2846.  https://doi.org/10.1007/s00382-015-2734-7 CrossRefGoogle Scholar
  14. Fotso-Nguemo TC, Vondou DA, Tchawoua C, Haensler A (2016) Assessment of simulated rainfall and temperature from the regional climate model remo and future changes over central africa. Clim Dyn 48(11):3685–3705.  https://doi.org/10.1007/s00382-016-3294-1 CrossRefGoogle Scholar
  15. Fotso-Nguemo TC, Vondou DA, Pokam WM, Djomou ZY, Diallo I, Haensler A, Tchotchou LAD, Kamsu-Tamo PH, Gaye AT, Tchawoua C (2017) On the added value of the regional climate model remo in the assessment of climate change signal over central africa. Clim Dyn 49(11):3813–3838.  https://doi.org/10.1007/s00382-017-3547-7 CrossRefGoogle Scholar
  16. Fotso-Nguemo TC, Chamani R, Yepdo ZD, Sonkoué D, Matsaguim CN, Vondou DA, Tanessong RS (2018) Projected trends of extreme rainfall events from cmip5 models over Central Africa. Atmos Sci Lett 19 (2):1–8.  https://doi.org/10.1002/asl.803 CrossRefGoogle Scholar
  17. Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP et al (2014) A quasi-global precipitation time series for drought monitoring. US Geological Survey Data Series 832(4):1–12.  https://doi.org/10.3133/ds832 CrossRefGoogle Scholar
  18. Gao H, Bohn TJ, Podest E, McDonald KC, Lettenmaier DP (2011) On the causes of the shrinking of lake chad. Env Res Lett 6(3):034,021. http://stacks.iop.org/1748-9326/6/i=3/a=034021 CrossRefGoogle Scholar
  19. Garcin Y, Deschamps P, Ménot G, de Saulieu G, Schefuß E, Sebag D, Dupont LM, Oslisly R, Brademann B, Mbusnum KG, Onana JM, Ako AA, Epp LS, Tjallingii R, Strecker MR, Brauer A, Sachse D (2018) Early anthropogenic impact on western central african rainforests 2,600 y ago. In: Proceedings of the national academy of sciences.  https://doi.org/10.1073/pnas.1715336115. http://www.pnas.org/content/early/2018/02/16/1715336115
  20. Giorgi F, Jones C, Asrar GR et al (2009) Addressing climate information needs at the regional level: the cordex framework. World Meteor Organ Bulletin 58(3):175. http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEXgiorgiWMO.pdf Google Scholar
  21. Giorgi F, Coppola E, Raffaele F, Diro GT, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart MP, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the crema ensemble projections. Clim Chang 125(1):39–51.  https://doi.org/10.1007/s10584-014-1117-0 CrossRefGoogle Scholar
  22. Haensler A, Saeed F, Jacob D (2013) Assessing the robustness of projected precipitation changes over central africa on the basis of a multitude of global and regional climate projections. Clim Chang 121(2):349–363.  https://doi.org/10.1007/s10584-013-0863-8 CrossRefGoogle Scholar
  23. Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. MPI Report No 336; Max Planck Institute for Meteorology: Hamburg, Germany. http://hdl.handle.net/11858/00-001M-0000-002B-539B-6
  24. Hernández-Díaz L, Laprise R, Sushama L, Martynov A, Winger K, Dugas B (2013) Climate simulation over cordex africa domain using the fifth-generation canadian regional climate model (crcm5). Clim Dyn 40(5):1415–1433.  https://doi.org/10.1007/s00382-012-1387-z CrossRefGoogle Scholar
  25. Hua W, Zhou L, Chen H, Nicholson SE, Raghavendra A, Jiang Y (2018) Possible causes of the central equatorial african long-term drought. Environ Res Lett 11(12):124,002. http://stacks.iop.org/1748-9326/11/i=12/a=124002 CrossRefGoogle Scholar
  26. Huffman GJ, Bolvin DT (2013) Trmm and other data precipitation data set documentation. NASA, Greenbelt, USA 28Google Scholar
  27. Huffman GJ, Adler R, Arkin A, Chang A, Ferraro R, Gruber A, Janowiak J, Mcnab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (gpcp) combined precipitation data set. Bull Am Meteor Soc 78:5–20.  https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2 CrossRefGoogle Scholar
  28. Ilyina T, Six KD, Segschneider J, Maier-Reimer E, Li H, Núñez-Riboni I (2013) Global ocean biogeochemistry model hamocc: Model architecture and performance as component of the mpi-earth system model in different cmip5 experimental realizations. J Adv Modeling Earth Syst 5(2):287–315.  https://doi.org/10.1029/2012MS000178 CrossRefGoogle Scholar
  29. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. (2001) the representation of cloud cover in atmospheric. Jelektronnyj resurs http://www.ipcc.ch. Cambridge University Press, Cambridge
  30. Jackson B, Nicholson SE, Klotter D (2009) Mesoscale convective systems over western equatorial africa and their relationship to large-scale circulation. Mon Weather Rev 137(4):1272–1294.  https://doi.org/10.1175/2008MWR2525.1 CrossRefGoogle Scholar
  31. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model remo. Meteorol Atmos Phys 63(1):119–129.  https://doi.org/10.1007/BF01025368 CrossRefGoogle Scholar
  32. James R, Washington R, Rowell DP (2013) Implications of global warming for the climate of african rainforests. Phil Trans R Soc B 368(1625):20120,298.  https://doi.org/10.1098/rstb.2012.0298 CrossRefGoogle Scholar
  33. Klutse NAB, Sylla MB, Diallo I, Sarr A, Dosio A, Diedhiou A, Kamga A, Lamptey B, Ali A, Gbobaniyi EO, Owusu K, Lennard C, Hewitson B, Nikulin G, Panitz HJ, Büchner M (2016) Daily characteristics of west african summer monsoon precipitation in cordex simulations. Theor Appl Climatol 123 (1):369–386.  https://doi.org/10.1007/s00704-014-1352-3 CrossRefGoogle Scholar
  34. Laprise R, Hernández-Díaz L, Tete K, Sushama L, Šeparović L, Martynov A, Winger K, Valin M (2013) Climate projections over cordex africa domain using the fifth-generation canadian regional climate model (crcm5). Clim Dyn 41(11):3219–3246.  https://doi.org/10.1007/s00382-012-1651-2 CrossRefGoogle Scholar
  35. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the echam general circulation model. Clim Dyn 12(8):557–572.  https://doi.org/10.1007/BF00207939 CrossRefGoogle Scholar
  36. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17(2):187–202.  https://doi.org/10.1007/BF00117978 CrossRefGoogle Scholar
  37. Majewski D (1991) The europa-model of the deutscher wetterdienst. ECMWF Seminar Proceedings. Numer Methods Atmos Models 2:147–191. https://ci.nii.ac.jp/naid/10006913190/en/ Google Scholar
  38. Malhi Y (2018) Ancient deforestation in the green heart of africa. In: Proceedings of the national academy of sciences.  https://doi.org/10.1073/pnas.1802172115. http://www.pnas.org/content/early/2018/03/15/1802172115
  39. Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of african monsoon climates in 21st century cordex projections. Clim Chang 125(1):53–65.  https://doi.org/10.1007/s10584-014-1097-0 CrossRefGoogle Scholar
  40. Mikolajewicz U, Notz D, von Storch J (2010) Characteristics of the ocean simulations in mpiom, the ocean component of the mp earth system model. J Adv Model Earth Syst Kageyama M, Paul A, Roche DM, Van Meerbeeck CJGoogle Scholar
  41. Morcrette JJ (1991) Radiation of cloud radiative properties in the european centre for medium range weather forecasts forecasting system. J Geophys Res 96(5):9121–9132CrossRefGoogle Scholar
  42. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  43. Nicholson SE, Grist JP (2003) The seasonal evolution of the atmospheric circulation over west africa and equatorial africa. J Clim 16(7):1013–1030.  https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2 CrossRefGoogle Scholar
  44. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A et al (2012) Precipitation climatology in an ensemble of cordex-africa regional climate simulations. J Clim 25(18):6057–6078.  https://doi.org/10.1175/JCLI-D-11-00375.1 CrossRefGoogle Scholar
  45. Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) Cosmo-clm (cclm) climate simulations over cordex-africa domain: analysis of the era-interim driven simulations at 0.44 degree and 0.22 degree resolution. Clim Dyn 42(11):3015–3038.  https://doi.org/10.1007/s00382-013-1834-5 CrossRefGoogle Scholar
  46. Pokam WM, Longandjo GN, Moufouma-Okia W, Bell JP, James R, Vondou DAD, Haensler A, Nguemo TCF, Guenang GM, Tchotchou ALD, Kamsu-Tamo PH, Takong RR, Nikulin G, Lennard C, Dosio A (2018) Consequences of 1.5c and 2c global warming levels for temperature and precipitation changes over central africa. Environmental Research Letters. http://iopscience.iop.org/10.1088/1748-9326/aab048
  47. Reick C, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in mpi-esm. J Adv Model Earth Syst 5(3):459–482.  https://doi.org/10.1002/jame.20022 CrossRefGoogle Scholar
  48. Saeed F, Haensler A, Weber T, Hagemann S, Jacob D (2013) Representation of extreme precipitation events leading to opposite climate change signals over the congo basin. Atmosphere 4(3):254–271.  https://doi.org/10.3390/atmos4030254. http://www.mdpi.com/2073-4433/4/3/254 CrossRefGoogle Scholar
  49. Sylla M, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol 33(7):1805–1817.  https://doi.org/10.1002/joc.3551 CrossRefGoogle Scholar
  50. Sylla MB, Gaye AT, Jenkins GS, Pal JS, Giorgi F (2010) Consistency of projected drought over the sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J Geophys Res Atmos (1984?2012) 115(D16).  https://doi.org/10.1029/2009JD012983
  51. Sylla MB, Giorgi F, Pal JS, Gibba P, Kebe I, Nikiema M (2015) Projected changes in the annual cycle of high intensity precipitation events over West Africa for the late 21st century. J Clim 28(2015):6475–6488.  https://doi.org/10.1175/JCLI-D-14-00854.1 CrossRefGoogle Scholar
  52. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of cmip5 and the experiment design. Bull Am Meteorol Soc 93(4):485.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  53. Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P, Moseley C, Pfeifer S, Rechid D, Remedio AR, Ries H, Petersen J, Preuschmann S, Raub T, Saeed F, Sieck K, Weber T (2013) How does a regional climate model modify the projected climate change signal of the driving gcm: A study over different cordex regions using remo. Atmosphere 4(2):214–236.  https://doi.org/10.3390/atmos4020214. http://www.mdpi.com/2073-4433/4/2/214 CrossRefGoogle Scholar
  54. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800.  https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  55. Van Noije T, Le Sager P, Segers A, van Velthoven P, Krol M, Hazeleger W, Williams A, Chambers S (2014) Simulation of tropospheric chemistry and aerosols with the climate model ec-earth. Geosci Model Dev Discuss 7:1933–2006CrossRefGoogle Scholar
  56. Vondou DA, Haensler A (2017) Evaluation of simulations with the regional climate model remo over Central Africa and the effect of increased spatial resolution. Int J Climatol 37:741–760.  https://doi.org/10.1002/joc.5035  https://doi.org/10.1002/joc.5035 CrossRefGoogle Scholar
  57. Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo basin rainfall climatology: can we believe the climate models? Philos Trans R Soc Lond B: Biol Sci 368(1625).  https://doi.org/10.1098/rstb.2012.0296. http://rstb.royalsocietypublishing.org/content/368/1625/20120296
  58. Weber T, Haensler A, Jacob D (2017) Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over Southern Africa in a regional climate model. Clim Dyn 51(7):2841–2855.  https://doi.org/10.1007/s00382-017-4052-8 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Environmental Modelling and Atmospheric Physics (LEMAP), Department of PhysicsUniversity of Yaounde 1YaoundéCameroon
  2. 2.2LMI DYCOFAC (IRD, University of Yaoundé, IRGM)YaoundéCameroon
  3. 3.Department of Physics, Higher Teacher Training CollegeUniversity of Yaounde 1YaoundéCameroon
  4. 4.Climate Service Center Germany (GERICS)Helmoltz-Zentrum GeesthachtHamburgGermany
  5. 5.Climate Change Research LaboratoryNational Institute of CartographyYaoundeCameroon
  6. 6.Laboratory of Geophysics and Geoexploration, Department of PhysicsUniversity of Yaounde 1YaoundéCameroon

Personalised recommendations