Advertisement

Theoretical and Applied Climatology

, Volume 137, Issue 1–2, pp 1305–1319 | Cite as

Recent and future changes of precipitation extremes in mainland Portugal

  • Mónica SantosEmail author
  • André Fonseca
  • Marcelo Fragoso
  • João A. Santos
Original Paper

Abstract

Recent and future changes in precipitation extremes over Portugal were studied. Trends in selected precipitation indices were calculated on a seasonal scale for the period of 1950–2003. Considering the same indices, this study also assessed possible changes under future climatic conditions (2046–2065). Furthermore, trends and projections for the future were evaluated using a single/unified index of extreme precipitation susceptibility (EPSI). The results revealed statistically significant drying trends in spring, mainly in northern and central Portugal, while weak wetting trends were detected in autumn. The EPSI trends also depicted a decrease of extreme precipitation in spring over central Portugal and a slight increase in autumn over northern Portugal and nearby Lisbon. On the other hand, climate change projections revealed a decrease in precipitation, mainly over northwestern Portugal, whereas the contribution of extreme precipitation to total precipitation is expected to increase, mostly in southern Portugal. The maximum number of consecutive dry days (CDD) is also projected to increase throughout Portugal. EPSI showed enhanced susceptibility for most Portuguese municipalities, which may be associated with increased vulnerability to flash floods. Climate change projections by municipality for both EPSI and CDD are an important decision support tool for civil protection and for risk management in Portugal.

Notes

Acknowledgments

We acknowledge the project FORLAND – Disastrous floods and landslides in Portugal: driving forces and applications for land use planning (PTDC/ATP-GEO/1660/2014).

Funding Information

This study was funded by the “Integrative Research in Environment, Agro-Chains and Technology” project (INTERACT; NORTE-010145-FEDER-000017) in its line of research entitled BEST-T4, co-financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020). It was also supported by FEDER/COMPETE/POCI (Operational Competitiveness and Internationalization Programme), POCI-01-0145-FEDER-006958, and by FCT (Portuguese Foundation for Science and Technology), UID/AGR/04033/2013.

Supplementary material

704_2018_2667_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2.05 mb)

References

  1. Acero FJ, García JA, Gallego MC, Parey S, Dacunha-Castelle D (2014) Trends in summer extreme temperatures over the Iberian Peninsula using nonurban station data. J Geophys Res Atmos 119:39–53.  https://doi.org/10.1002/2013JD020590 CrossRefGoogle Scholar
  2. Aguilar E, Peterson TC, Obando PR, Frutos R, Retana JA, Solera M, Soley J, García IG, Araujo RM, Santos AR, Valle VE, Brunet M, Aguilar L, Álvarez L, Bautista M, Castañón C, Herrera L, Ruano E, Sinay JJ, Sánchez E, Oviedo GIH, Obed F, Salgado JE, Vázquez JL, Baca M, Gutiérrez M, Centella C, Espinosa J, Martínez D, Olmedo B, Espinoza CEO, Núñez R, Haylock M, Benavides H, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961-2003. J Geophys Res 110:D23107.  https://doi.org/10.1029/2005jd006119 CrossRefGoogle Scholar
  3. Ahammed F, Hewa GA, Argue JR (2014) Variability of annual daily maximum rainfall of Dhaka, Bangladesh. Atmos Res 137:176–182.  https://doi.org/10.1016/j.atmosres.2013.10.013 CrossRefGoogle Scholar
  4. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109.  https://doi.org/10.1029/2005jd006290 CrossRefGoogle Scholar
  5. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126.  https://doi.org/10.1175/1520-0493(1987)115<1083:csapol>2.0.co;2 CrossRefGoogle Scholar
  6. Bartolini G, Morabito M, Crisci A, Grifoni D, Torrigiani T, Petralli M, Maracchi G, Orlandini S (2008) Recent trends in Tuscany (Italy) summer temperature and indices of extremes. Int J Climatol 28:1751–1760.  https://doi.org/10.1002/joc.1673 CrossRefGoogle Scholar
  7. Bartolini G, Grifoni D, Magno R, Torrigiani T, Gozzini B (2018) Changes in temporal distribution of precipitation in a Mediterranean area (Tuscany, Italy) 1955-2013. Int J Climatol 38:1366–1374.  https://doi.org/10.1002/joc.5251 CrossRefGoogle Scholar
  8. Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res Atmos 116.  https://doi.org/10.1029/2010JD015481
  9. Bennett KE, Walsh JE (2015) Spatial and temporal changes in indices of extreme precipitation and temperature for Alaska. Int J Climatol 35:1434–1452.  https://doi.org/10.1002/joc.4067 CrossRefGoogle Scholar
  10. Boccolari M, Malmusi S (2013) Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos Res 122:16–31.  https://doi.org/10.1016/j.atmosres.2012.10.022 CrossRefGoogle Scholar
  11. Booth ELJ, Byrne JM, Johnson DL (2012) Climatic changes in western North America, 1950–2005. Int J Climatol 32:2283–2300.  https://doi.org/10.1002/joc.3401 CrossRefGoogle Scholar
  12. Chen WY, Van den Dool H (2003) Sensitivity of teleconnection patterns to the sign of their primary action center. Mon Weather Rev 131:2885–2899.  https://doi.org/10.1175/1520-0493(2003)131<2885:SOTPTT>2.0.CO;2 CrossRefGoogle Scholar
  13. Cinco TA, de Guzman RG, Hilario FD, Wilson DM (2014) Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951–2010. Atmos Res 145–146:12–26.  https://doi.org/10.1016/j.atmosres.2014.03.025 CrossRefGoogle Scholar
  14. Comas-Bru L, McDermott F (2014) Impacts of the EA and SCA patterns on the European twentieth century NAO–winter climate relationship. Q J R Meteorol Soc 140:354–363.  https://doi.org/10.1002/qj.2158 CrossRefGoogle Scholar
  15. Comas-Bru L, McDermott F, Werner M (2016) The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Clim Dyn 47:2059–2069.  https://doi.org/10.1007/s00382-015-2950-1 CrossRefGoogle Scholar
  16. Costa AC, Santos JA, Pinto JG (2012) Climate change scenarios for precipitation extremes in Portugal. Theor Appl Climatol 108:217–234.  https://doi.org/10.1007/s00704-011-0528-3 CrossRefGoogle Scholar
  17. Deshpande NR, Kothawale DR, Kulkarni A (2016) Changes in climate extremes over major river basins of India. Int J Climatol 36:4548–4559.  https://doi.org/10.1002/joc.4651 CrossRefGoogle Scholar
  18. Espírito Santo F, Ramos AM, de Lima MIP, Trigo RM (2014) Seasonal changes in daily precipitation extremes in mainland Portugal from 1941 to 2007. Reg Environ Chang 14:1765–1788.  https://doi.org/10.1007/s10113-013-0515-6 CrossRefGoogle Scholar
  19. Fragoso M, Marques D, Santos JA, Alcoforado MJ, Amorim I, Garcia JC, Silva L, Nunes MF (2015) Climatic extremes in Portugal in the 1780s based on documentary and instrumental records. Clim Res 66:141–159.  https://doi.org/10.3354/cr01337 CrossRefGoogle Scholar
  20. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212.  https://doi.org/10.3354/cr019193 CrossRefGoogle Scholar
  21. Gallego MC, García JA, Vaquero JM (2005) The NAO signal in daily rainfall series over the Iberian Peninsula. Clim Res 29:103–109.  https://doi.org/10.3354/cr029103 CrossRefGoogle Scholar
  22. Gallego MC, Trigo RM, Vaquero JM, Brunet M, García JA, Sigró J, Valente MA (2011) Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J Geophys Res 116:D02109.  https://doi.org/10.1029/2010JD014255 CrossRefGoogle Scholar
  23. Giorgi F, Bi X, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Clim Dyn 23:839–858.  https://doi.org/10.1007/s00382-004-0467-0 CrossRefGoogle Scholar
  24. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615.  https://doi.org/10.1002/joc.810 CrossRefGoogle Scholar
  25. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299.  https://doi.org/10.1016/j.geomorph.2005.06.002 CrossRefGoogle Scholar
  26. Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 663–745Google Scholar
  27. Hidalgo-Muñoz JM, Argüeso D, Gámiz-Fortis SR, Esteban-Parra MJ, Castro-Díez Y (2011) Trends of extreme precipitation and associated synoptic patterns over the southern Iberian Peninsula. J Hydrol 409:497–511.  https://doi.org/10.1016/j.jhydrol.2011.08.049 CrossRefGoogle Scholar
  28. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679.  https://doi.org/10.1126/science.269.5224.676 CrossRefGoogle Scholar
  29. IPCC (2012) Summary for policymakers. In: Field CB et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups i and ii of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–21Google Scholar
  30. IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–29Google Scholar
  31. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  32. Jones PD, Lister DH, Harpham C, Rusticucci M, Penalba O (2013) Construction of a daily precipitation grid for southeastern South America for the period 1961–2000. Int J Climatol 33:2508–2519.  https://doi.org/10.1002/joc.3605 CrossRefGoogle Scholar
  33. Karl T, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Clim Chang 42:3–7.  https://doi.org/10.1023/A:1005491526870 CrossRefGoogle Scholar
  34. Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather Clim Extremes 4:75–85.  https://doi.org/10.1016/j.wace.2014.05.001 CrossRefGoogle Scholar
  35. Kendall S (1976) Time Series. Oxford Univ, Press, New YorkGoogle Scholar
  36. Klein Tank AMG et al (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res Atmos 111.  https://doi.org/10.1029/2005JD006316
  37. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from intergovernmental panel on climate change AR4 models using equidistant quantile matching. J Geophys Res Atmos 115.  https://doi.org/10.1029/2009JD012882
  38. Lima MIPD, Santo FE, Ramos AM, de Lima JLMP (2013) Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941–2007. Atmos Res 127:195–209.  https://doi.org/10.1016/j.atmosres.2012.10.001 CrossRefGoogle Scholar
  39. Lima MIP, Santo FE, Ramos AM, Trigo RM (2015) Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor Appl Climatol 119:55–75.  https://doi.org/10.1007/s00704-013-1079-6 CrossRefGoogle Scholar
  40. Łupikasza E (2010) Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int J Climatol 30:991–1007.  https://doi.org/10.1002/joc.1950 CrossRefGoogle Scholar
  41. Mann HB (1945) Non parametric test against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  42. Melo-Gonçalves P, Rocha A, Santos JA (2016) Robust inferences on climate change patterns of precipitation extremes in the Iberian Peninsula. Phys Chem Earth 94:114–126.  https://doi.org/10.1016/j.pce.2016.05.003 CrossRefGoogle Scholar
  43. Merino A, Fernández-Vaquero M, López L, Fernández-González S, Hermida L, Sánchez JL, García-Ortega E, Gascón E (2016) Large-scale patterns of daily precipitation extremes on the Iberian Peninsula. Int J Climatol 36:3873–3891.  https://doi.org/10.1002/joc.4601 CrossRefGoogle Scholar
  44. Miao C, Su L, Sun Q, Duan Q (2016) A nonstationary bias-correction technique to remove bias in GCM simulations. J Geophys Res Atmos 121:5718–5735.  https://doi.org/10.1002/2015JD024159 CrossRefGoogle Scholar
  45. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  46. Omondi PAO et al (2014) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34:1262–1277.  https://doi.org/10.1002/joc.3763 CrossRefGoogle Scholar
  47. Pakalidou N, Karacosta P (2017) Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmos Res 208:106–115.  https://doi.org/10.1016/j.atmosres.2017.07.029 CrossRefGoogle Scholar
  48. Paulo AA, Rosa RD, Pereira LS (2012) Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat Hazards Earth Syst Sci 12:1481–1491.  https://doi.org/10.5194/nhess-12-1481-2012 CrossRefGoogle Scholar
  49. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126.  https://doi.org/10.2307/2346729 CrossRefGoogle Scholar
  50. Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip Rev Clim Chang 3:79–90.  https://doi.org/10.1002/wcc.150 CrossRefGoogle Scholar
  51. Pryor SC, Howe JA, Kunkel KE (2009) How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int J Climatol 29:31–45.  https://doi.org/10.1002/joc.1696 CrossRefGoogle Scholar
  52. Rahimpour Golroudbary V, Zeng Y, Mannaerts CM, Su Z (2016) Attributing seasonal variation of daily extreme precipitation events across The Netherlands. Weather Clim Extremes 14:56–66.  https://doi.org/10.1016/j.wace.2016.11.003 CrossRefGoogle Scholar
  53. Río S, Herrero L, Fraile R, Penas A (2011) Spatial distribution of recent rainfall trends in Spain (1961–2006). Int J Climatol 31:656–667.  https://doi.org/10.1002/joc.2111 CrossRefGoogle Scholar
  54. Rodriguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18:299–316.  https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L CrossRefGoogle Scholar
  55. Sáez de Cámara E, Gangoiti G, Alonso L, Iza J (2015) Daily precipitation in Northern Iberia: understanding the recent changes after the circulation variability in the North Atlantic sector. J Geophys Res Atmos 120:9981–9910,9005.  https://doi.org/10.1002/2015JD023306 CrossRefGoogle Scholar
  56. Santos JA, Corte-Real J (2006) Temperature extremes in Europe and wintertime large-scale atmospheric circulation: HadCM3 future scenarios. Clim Res 31:3–18.  https://doi.org/10.3354/cr031003 CrossRefGoogle Scholar
  57. Santos M, Fragoso M (2013) Precipitation variability in Northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos Res 131:34–45.  https://doi.org/10.1016/j.atmosres.2013.04.008 CrossRefGoogle Scholar
  58. Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50.  https://doi.org/10.1002/joc.1101 CrossRefGoogle Scholar
  59. Santos JA, Corte-Real J, Ulbrich U, Palutikof J (2006) European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theor Appl Climatol 87:85–102.  https://doi.org/10.1007/s00704-005-0224-2 CrossRefGoogle Scholar
  60. Santos J, Corte-real J, Leite S (2007) Atmospheric large-scale dynamics during the 2004/2005 winter drought in Portugal. Int J Climatol 27:571–586.  https://doi.org/10.1002/joc.1425 CrossRefGoogle Scholar
  61. Santos JA, Woollings T, Pinto JG (2013) Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon Weather Rev 141:3626–3640.  https://doi.org/10.1175/MWR-D-13-00024.1 CrossRefGoogle Scholar
  62. Santos M, Bateira C, Soares L, Hermenegildo C (2014) Hydro-geomorphologic GIS database in Northern Portugal, between 1865 and 2010: Temporal and spatial analysis. Int J Disaster Risk Reduct 10(Part A):143–152.  https://doi.org/10.1016/j.ijdrr.2014.08.003 CrossRefGoogle Scholar
  63. Santos M, Santos JA, Fragoso M (2015) Historical damaging flood records for 1871–2011 in northern Portugal and underlying atmospheric forcings. J Hydrol 530:591–603.  https://doi.org/10.1016/j.jhydrol.2015.10.011 CrossRefGoogle Scholar
  64. Santos JA, Belo-Pereira M, Fraga H, Pinto JG (2016) Understanding climate change projections for precipitation over western Europe with a weather typing approach. J Geophys Res Atmos 121:1170–1189.  https://doi.org/10.1002/2015JD024399 CrossRefGoogle Scholar
  65. Santos M, Fragoso M, Santos JA (2017) Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Appl Geogr 86:128–138.  https://doi.org/10.1016/j.apgeog.2017.06.020 CrossRefGoogle Scholar
  66. Santos M, Fragoso M, Santos JA (2018) Damaging flood severity assessment in Northern Portugal over more than 150 years (1865–2016). Nat Hazards 91:983–1002.  https://doi.org/10.1007/s11069-017-3166-y CrossRefGoogle Scholar
  67. Sayemuzzaman M, Jha MK, Mekonnen A, Schimmel KA (2014) Subseasonal climate variability for North Carolina, United States. Atmos Res 145–146:69–79.  https://doi.org/10.1016/j.atmosres.2014.03.032 CrossRefGoogle Scholar
  68. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389.  https://doi.org/10.2307/2285891 CrossRefGoogle Scholar
  69. Silva AT, Portela MM, Naghettini M (2012) Nonstationarities in the occurrence rates of flood events in Portuguese watersheds. Hydrol Earth Syst Sci 16:241–254.  https://doi.org/10.5194/hess-16-241-2012 CrossRefGoogle Scholar
  70. Soares PMM, Cardoso RM, Lima DCA, Miranda PMA (2017) Future precipitation in Portugal: high-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim Dyn 49:2503–2530.  https://doi.org/10.1007/s00382-016-3455-2 CrossRefGoogle Scholar
  71. Stephenson TS, Vincent LA, Allen T, van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekhoudt JRI, Blenman RC, Braithwaite GC, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Ozoria Zaruela M, Porter AO, Santana Ramirez M, Tamar GA, Roberts BA, Sallons Mitro S, Shaw A, Spence JM, Winter A, Trotman AR (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int J Climatol 34:2957–2971.  https://doi.org/10.1002/joc.3889 CrossRefGoogle Scholar
  72. Supari S, Tangang F, Juneng L, Aldrian E (2017) Observed changes in extreme temperature and precipitation over Indonesia. Int J Climatol 37:1979–1997.  https://doi.org/10.1002/joc.4829 CrossRefGoogle Scholar
  73. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II, III. Ned Akad Wet Proc Ser A 53:386–392 521-525, 1397-1412Google Scholar
  74. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138.  https://doi.org/10.3354/cr00953 CrossRefGoogle Scholar
  75. Trigo RM, DaCamara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581.  https://doi.org/10.1002/1097-0088(20001115)20:13<1559::aid-joc555>3.0.co;2-5 CrossRefGoogle Scholar
  76. Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944.  https://doi.org/10.1002/joc.1048 CrossRefGoogle Scholar
  77. Turco M, Llasat MC (2011) Trends in indices of daily precipitation extremes in Catalonia (Ne Spain), 1951-2003. Nat Hazards Earth Syst 11:3213–3226.  https://doi.org/10.5194/nhess-11-3213-2011 CrossRefGoogle Scholar
  78. van den Besselaar EJM, Klein Tank AMG, Buishand TA (2013) Trends in European precipitation extremes over 1951–2010. Int J Climatol 33:2682–2689.  https://doi.org/10.1002/joc.3619 CrossRefGoogle Scholar
  79. van den Dool HM, Saha S, Johansson Å (2000) Empirical orthogonal teleconnections. J Clim 13:1421–1435.  https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2 CrossRefGoogle Scholar
  80. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  81. Wang L, Chen W (2014) Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation. Atmos Sci Lett 15:1–6.  https://doi.org/10.1002/asl2.454 CrossRefGoogle Scholar
  82. Wang H, Pan Y, Chen Y, Ye Z (2017) Linear trend and abrupt changes of climate indices in the arid region of northwestern China. Atmos Res 196:108–118.  https://doi.org/10.1016/j.atmosres.2017.06.008 CrossRefGoogle Scholar
  83. Woollings T, Pinto JG, Santos JA (2011) Dynamical evolution of North Atlantic ridges and poleward jet stream displacements. J Atmos Sci 68:954–963.  https://doi.org/10.1175/2011JAS3661.1 CrossRefGoogle Scholar
  84. Wu Y, Wu S-Y, Wen J, Xu M, Tan J (2015) Changing characteristics of precipitation in China during 1960–2012. Int J Climatol 36:1387–1402.  https://doi.org/10.1002/joc.4432 CrossRefGoogle Scholar
  85. Zolina O, Simmer C, Kapala A, Bachner S, Gulev S, Maechel H (2008) Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J Geophys Res 113:D06110.  https://doi.org/10.1029/2007jd008393 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITABUniversidade de Trás-os-Montes e Alto Douro, UTADVila RealPortugal
  2. 2.Institute of Geography and Spatial Planning, Edifício IGOTUniversidade de LisboaLisbonPortugal

Personalised recommendations