Advertisement

Theoretical and Applied Climatology

, Volume 137, Issue 1–2, pp 893–907 | Cite as

Assessment of human bio-meteorological environment over the Tibetan Plateau region based on CORDEX climate model projections

  • Xiaoli Chi
  • Ulrich Cubasch
  • Sahar SodoudiEmail author
Original Paper
  • 152 Downloads

Abstract

This research mainly evaluates the human bio-meteorological conditions and its changes in the Tibetan Plateau over the past 27 years under the simulation of regional climate models of HadGEM3-RA and RegCM from the CORDEX-East Asia experiments by using the Universal Thermal Climate Index (UTCI). Both models are able to reproduce the present climate realistically. As an extension, the human thermal comfort information about Tibetan Plateau in the next 27 years is projected under the scenarios of RCP4.5 and RCP8.5. The results show that UTCI in Tibetan Plateau covers four stress categories, namely strong cold stress, moderate cold stress, slight cold stress, no thermal stress, and cold stresses, is prevailing throughout the whole year. A small amount of no thermal stress category appears in the summer period and the human bio-meteorological condition is most stable at the same period, especially from July to September. According to the projections in the near future, with climate change taken into account, annual cumulative pleasant days will increase significantly while the cold stresses days will reduce. The distribution frequency of UTCI categories varies among regions showing clear altitude/latitude dependency. Lhasa, Xining, and Yushu will be the top three cities in terms of thermal favourability by analysing the results of both models. The policy of migration, urban planning, tourism authorities, travel agencies, resorts, and tourists in Tibetan Plateau could be beneficial from these results.

Notes

Acknowledgements

We acknowledge the Coordinated Regional Climate Downscaling Experiment (CORDEX) in East Asia, which provided the model data (https://cordex-ea.climate.go.kr/main/aboutCordexPage.do). We also thank the Chinese Meteorological Administration, which provided the observation data. Xiaoli Chi is grateful to China’s Scholarship Council (CSC) for the financial support during her PhD study. The authors thank Patricia Margerison for proofreading this paper.

References

  1. Barredo JI, Mauri A, Caudullo G, Dosio A (2018) Assessing shifts of Mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in Europe. Pure Appl Geophys 1–17Google Scholar
  2. Beshir MY, Ramsey JD (1988) Heat stress indices: a review paper. Int J Ind Ergon 3(2):89–102CrossRefGoogle Scholar
  3. Blazejczyk K, Kuklane K (2018) Special feature on heat: transdisciplinary approaches to climate change. Int J Biometeorol 62:289–290.  https://doi.org/10.1007/s00484-018-1519-1 CrossRefGoogle Scholar
  4. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535.  https://doi.org/10.1007/s00484-011-0453-2 CrossRefGoogle Scholar
  5. Blazejczyk A, Blazejczyk K, Baranowski J et al (2018) Heat stress mortality and desired adaptation responses of healthcare system in Poland. Int J Biometeorol 62:307–318.  https://doi.org/10.1007/s00484-017-1423-0 CrossRefGoogle Scholar
  6. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56 (3):481–494CrossRefGoogle Scholar
  7. Burkart K, Canário P, Breitner S, Schneider A, Scherber K, Andrade H, Alcoforado MJ, Endlicher W (2013) Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ Pollut 183:54–63CrossRefGoogle Scholar
  8. Cheung CSC, Hart MA (2014) Climate change and thermal comfort in Hong Kong. Int J Biometeorol 58(2):137–148.  https://doi.org/10.1007/s00484-012-0608-9 CrossRefGoogle Scholar
  9. China Meteorological Administration National Meteorological Information Center (2013) China surface weather dataset (fixed time). http://cdc.cma.gov.cn/dataSetDetailed.do?changeFlag=detai
  10. De Freitas CR (1985) Assessment of human bioclimate based on thermal response. Int J Biometeorol 29(2):97–119CrossRefGoogle Scholar
  11. Di Napoli C, Pappenberger F, Cloke HL (2018) Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int J Biometeorol 62:1155–1165.  https://doi.org/10.1007/s00484-018-1518-2 CrossRefGoogle Scholar
  12. Donaldson GC, Tchernjavskii VE, Ermakov SP, Bucher K, Keatinge WR (1998) Winter mortality and cold stress in Yekaterinburg, Russia: interview survey. B M J 316(7130):514–518CrossRefGoogle Scholar
  13. Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807.  https://doi.org/10.1007/s00382-004-0488-8 CrossRefGoogle Scholar
  14. Fanger PO (1970) Thermal comfort. Danish Technical Press, CopenhagenGoogle Scholar
  15. Fiala D, Kevin JL, Martin S (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972CrossRefGoogle Scholar
  16. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159.  https://doi.org/10.1007/s004840100099 CrossRefGoogle Scholar
  17. Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441.  https://doi.org/10.1007/s00484-011-0424-7 CrossRefGoogle Scholar
  18. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–260Google Scholar
  19. Gagge AP, Forbelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–729Google Scholar
  20. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary test over multi CORDEX domain. Clim Res 52:7–29.  https://doi.org/10.3354/cr01018 CrossRefGoogle Scholar
  21. Goh C (2012) Exploring impact of climate on tourism demand. Ann Tour Res 39(4):1859–1188.  https://doi.org/10.1016/j.annals.2012.05.027 CrossRefGoogle Scholar
  22. Gonzalez RR, Nishi Y, Gagge AP (1974) Experimental evaluation of standard effective temperature a new bio-meteorological index of man’s thermal discomfort. Int J Biometeorol 18(1):1–15CrossRefGoogle Scholar
  23. Grigorieva E, Matzarakis A (2011) Physiologically equivalent temperature as a factor for tourism in extreme climate regions in the Russian Far East: preliminary results. Eur J Tour Hosp Recreat 3:127–142Google Scholar
  24. Group TE (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 349(9062):1341–1346CrossRefGoogle Scholar
  25. Guo D, Wang H (2012) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 32(12):1775–1781.  https://doi.org/10.1002/joc.2388 CrossRefGoogle Scholar
  26. Guo D, Yu E, Wang H (2016) Will the Tibetan Plateau warming depend on elevation in the future? J Geophys Res 121(8):3969–3978.  https://doi.org/10.1002/2016JD-24871 CrossRefGoogle Scholar
  27. Hamilton JM, Lau MA (2005) The role of climate information in tourist destination choice decision-making. In: Proceedings of the 17th International Congress of Biometeorology (ICB 2005), Garmisch-Partenkirchen, Germany, 9–5 September 2005. Deutscher Wetterdienst, Offenbach am Main, pp 608–611Google Scholar
  28. Hwang RL, Lin TP, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build Environ 46(4):863–870.  https://doi.org/10.1016/j.buildenv.2010.10.017 CrossRefGoogle Scholar
  29. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  30. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  31. IPCC (2007a) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  33. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428.  https://doi.org/10.1007/s00484-011-0513-7 CrossRefGoogle Scholar
  34. Kozak M (2002) Comparative analysis of tourist motivations by nationality and destinations. Tour Manag 23(3):221–232.  https://doi.org/10.1016/S0261-5177(01)00090-5 CrossRefGoogle Scholar
  35. Lee JW, Hong SY, Chang EC, Suh MS, Kang HS (2014) Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim Dyn 42(3–4):733–747CrossRefGoogle Scholar
  36. Li R, Chi XL (2014) Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theor Appl Climatol 117:613–624.  https://doi.org/10.1007/s00704-013-1227-5 CrossRefGoogle Scholar
  37. Lin TP, Hwang CC, Cheng HY (2006) The influence of climate information on travel arrangements. In: Proceedings of the 8th leisure, recreation and tourism research symposium. Taipei. Outdoor Recreation Association, Taipei, pp 120–126Google Scholar
  38. Lin TP, Matzarakis A, Hwang RL (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221.  https://doi.org/10.1016/j.buildenv.2009.06.002 CrossRefGoogle Scholar
  39. Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts-summary of research and results from the ENSEMBLES projectGoogle Scholar
  40. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742.  https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y CrossRefGoogle Scholar
  41. Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: model description and global climatology. J Clim 19:1274–1302CrossRefGoogle Scholar
  42. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84.  https://doi.org/10.1007/s004840050119 CrossRefGoogle Scholar
  43. Matzarakis A, de Freitas C, Scott D (2004) Advances in tourismclimatology. Berichte des Meteorologischen Institutes der Universität, FreiburgGoogle Scholar
  44. Matzarakis A, Rutz F, Mayer H (2007) Modeling radiation fluxes in simple and complex environments – application of the RayMan model. Int J Biometeorol 51:323–334.  https://doi.org/10.1007/s00484-006-0061-8 CrossRefGoogle Scholar
  45. Matzarakis A, Rutz F, Mayer H (2010) Modeling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139.  https://doi.org/10.1007/s00484-009-0261-0 CrossRefGoogle Scholar
  46. Pepi WJ (2000) The new summer simmer index. International audience at the 80th annual meeting of AMS at Long Beach, California, on January 2000, 11Google Scholar
  47. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1–2):187–192.  https://doi.org/10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  48. Qin J, Yang K, Liang SL, Guo XF (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97(1):321–327.  https://doi.org/10.1007/s10584-009-9733-9 CrossRefGoogle Scholar
  49. Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40(4):762–775CrossRefGoogle Scholar
  50. Shitzer A, De Dear R (2006) Inconsistencies in the “new” wind chill chart at low wind speeds. J Appl Meteorol Climatol 45:787–790.  https://doi.org/10.1175/JAM2373.1 CrossRefGoogle Scholar
  51. Shitzer A, Tikuisis P (2012) Advances, shortcomings, and recommendations for wind chill estimation. Int J Biometeorol 56(3):495–503.  https://doi.org/10.1007/s00484-010-0362-9 CrossRefGoogle Scholar
  52. Shiue I, Muthers S, Bearman N (2014) The role of cold stress in predicting extra cardiovascular and respiratory admissions. Int J Cardiol 172(1):e109–e110CrossRefGoogle Scholar
  53. Taleghani M, Kleerekoper L, Tenpierik M, van den Dobbelsteen A (2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Build Environ 83:65–78.  https://doi.org/10.1016/j.buildenv.2014.03.014 CrossRefGoogle Scholar
  54. Taleghani M, Sailor D, Ban-Weiss GA (2016) Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ Res Lett 11(2):024003.  https://doi.org/10.1088/1748-9326/11/2/024003 CrossRefGoogle Scholar
  55. Tikuisis P, Osczevski RJ (2002) Dynamic model of facial cooling. J Appl Meteorol 41(12):1241–1246CrossRefGoogle Scholar
  56. Tikuisis P, Osczevski RJ (2003) Facial cooling during cold air exposure. Bull Am Meteorol Soc 84(7):927–933.  https://doi.org/10.1175/BAMS-84-7-927 CrossRefGoogle Scholar
  57. Urban A, Kysel’y J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 11(1):952–967.  https://doi.org/10.3390/ijerph110100952 CrossRefGoogle Scholar
  58. Yan YY (2005) Human thermal climates in China. Phys Geogr 26(3):163–176CrossRefGoogle Scholar
  59. Yanai MH, Li CF, Song ZS (1992) Seasonal heating of the Tibetan plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn 70(1B):319–351CrossRefGoogle Scholar
  60. Ye DZ, Gao YX (1979) The meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing, pp 1–278 (in Chinese)Google Scholar
  61. Zhou BT, Wen QH, Xu Y, Song LC, Zhang XB (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multi-model ensembles. J Clim 27(17):6591–6611.  https://doi.org/10.1175/JCLI-D-13-001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental and Resource SciencesZhejiang A&F UniversityHangzhouChina
  2. 2.Institute of MeteorologyFree University of BerlinBerlinGermany

Personalised recommendations