Advertisement

Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina

  • M.F. D’Andrea
  • A.N. Rousseau
  • Y. Bigah
  • N.N. Gattinoni
  • J.C. Brodeur
Original Paper
  • 110 Downloads

Abstract

Agricultural production is sensitive to weather and thus directly affected by climate change. In Argentina, the geographic region known as the “Pampa” is at the heart of agricultural production. In this context, the objective of the present study was to evaluate the presence of long-term trends and abrupt changes in reference evapotranspiration (ETo PM) and associated climate variables in 30 weather stations of the Pampa over the 1984–2014 period. The presence of temporal trends was evaluated using Mann-Kendall’s statistical test, whereas abrupt changes were detected through Pettitt test. Significant upward trends were observed in 80 and 43% of maximum temperature (Tmax) and ETo PM time series, whereas relative humidity (RH) and wind speed (WS), in contrast, presented decreasing trends in 57 and 47% of the locations. Abrupt changes were frequently observed in the years 2000–2003 for Tmax, RH, and ETo PM time series, a period that coincides with the occurrence of flooding events in the region. Weather stations of the Pampa region could be divided into two broad categories based on their trends in ETo PM and influencing climate variables: (A) stations exhibiting a rising trend in ETo PM and a concomitant decreasing trend in RH and (B) stations presenting invariant ETo PM and a decreasing trend in WS. The spatial distribution of the two categories of stations did not exhibit any specific geographic pattern. The information provided herein on modern trends in climate and evaporative demand is essential to the development of climate models and future scenarios necessary to evaluate food security prospects both regionally and globally.

Notes

Acknowledgments

We gratefully thank Graciela Cazenave, Vanesa Ramis, and Maria Victoria Feler of the “Instituto de Clima y Agua,” INTA, for their help with data gathering and interpretation. We are also indebted to Nestor Garciarena from the agrometeorological station of INTA-Paraná and Hector A. Casa from the Hydraulic Management Agency of Entre Ríos Province for facilitating local data and information. We are grateful to Priscilla Minotti for help with GIS images and to an anonymous reviewer for comments on a previous version of the manuscript. We thank the National Meteorological Service for its collaboration. The first author would like to acknowledge the financial support of Global Affairs Canada for a scholarship awarded through the Emerging Leaders in the Americas Program.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 56(97):e156Google Scholar
  2. Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2014) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Chang 6:151–169.  https://doi.org/10.1002/wcc.316 CrossRefGoogle Scholar
  3. Barros VR, Doyle ME, Camilloni IA (2008) Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theor Appl Climatol 93:19–33.  https://doi.org/10.1007/s00704-007-0329-x CrossRefGoogle Scholar
  4. Bichet A, Wild M, Folini D, Schr C (2012) Causes for decadal variations of wind speed over land: sensitivity studies with a global climate model. Geophys Res Lett 39:4–9.  https://doi.org/10.1029/2012GL051685 CrossRefGoogle Scholar
  5. Brutsaert W, Parlange MB (1998) Hydrologic cycle explains the evaporation paradox. Nature 396:1998–1998.  https://doi.org/10.1038/23845 CrossRefGoogle Scholar
  6. Byrne MP, O’Gorman PA, Byrne MP, O’Gorman PA (2016) Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J Clim JCLI-D-16-0351.1.  https://doi.org/10.1175/JCLI-D-16-0351.1
  7. Cardoso LFN, Silva WL, Justi MGA (2016) Long-term trends in near-surface wind speed over the southern hemisphere: a preliminary analysis. Int J Geosci 2016:938–943Google Scholar
  8. Castañeda ME, Barros V (1994) Las tendencias de la precipitación en el Cono Sur de América al este de los Andes. Meteorológica 19:23–32Google Scholar
  9. Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol 87:55–73.  https://doi.org/10.1016/S0168-1923(97)00006-3 CrossRefGoogle Scholar
  10. de la Casa AC, Ovando GG (2016) Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. J Hydrol Reg Stud 5:66–79.  https://doi.org/10.1016/j.ejrh.2015.11.009 CrossRefGoogle Scholar
  11. Durbin J, Watson G (1950) Testing for serial correlation in least squares regression. Biometrika 37(1):409–428.  https://doi.org/10.1093/biomet/37.3-4.409 Google Scholar
  12. Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression. II. Biometrika 58(1):159–177. 79.  https://doi.org/10.1093/biomet/38.1-2.159 CrossRefGoogle Scholar
  13. Grossi Gallegos H, Spreafichi MI (2008) Análisis de tendencias de heliofanía efectiva en Argentina. Meteorológica 32:5–17Google Scholar
  14. Hobbins MT, Ramirez J (2004) Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys Res Lett 31:1–5CrossRefGoogle Scholar
  15. Houspanossian J, Kuppel S, Nosetto M, Di Bella C, Oricchio P, Barrucand M, Rusticucci M, Jobbágy E (2016) Long-lasting floods buffer the thermal regime of the Pampas. Theor Appl Climatol:1–10.  https://doi.org/10.1007/s00704-016-1959-7
  16. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95.  https://doi.org/10.1016/j.jhydrol.2005.07.003 CrossRefGoogle Scholar
  17. Jacques-Coper M, Garreaud RD (2014) Characterization of the 1970s climate shift in South America. Int J Climatol 2179:2164–2179.  https://doi.org/10.1002/joc.4120 Google Scholar
  18. Jiang Y, Luo Y, Zhao Z, Tao S (2010) Changes in wind speed over China during 1956-2004. Theor Appl Climatol 99:421–430.  https://doi.org/10.1007/s00704-009-0152-7 CrossRefGoogle Scholar
  19. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954.  https://doi.org/10.1038/nature09396 CrossRefGoogle Scholar
  20. Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600.  https://doi.org/10.1007/s11269-010-9762-1 CrossRefGoogle Scholar
  21. Labraga JC, Scian B, Frumento O (2002) Anomalies in the atmospheric circulation associated with the rainfall excess or deficit in the Pampa Region in Argentina. J Geophys Res Atmos 107:1–15.  https://doi.org/10.1029/2002JD002113 CrossRefGoogle Scholar
  22. Li S (2017) Change detection: how has urban expansion in Buenos Aires metropolitan region affected croplands. Int J Digit Earth 0:1–17.  https://doi.org/10.1080/17538947.2017.1311954 Google Scholar
  23. Maenza RA, Agosta EA, Bettolli ML (2017) Climate change and precipitation variability over the western “Pampas” in Argentina. Int J Climatol 37:445–463.  https://doi.org/10.1002/joc.5014 CrossRefGoogle Scholar
  24. Mallakpour I, Villarini G (2015) A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol Sci J 37–41.  https://doi.org/10.1016/j.jhazmat.2013.02.017
  25. McMahon T a, Peel MC, Lowe L, Srikanthan R, McVicar TR (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci.  https://doi.org/10.5194/hess-17-1331-2013
  26. McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416–417:182–205.  https://doi.org/10.1016/j.jhydrol.2011.10.024 CrossRefGoogle Scholar
  27. Miralles DG, van den Berg MJ, Gash JH, Parinussa RM, de Jeu RAM, Beck HE, Holmes TRH, Jiménez C, Verhoest NEC, Dorigo WA, Teuling A, Johannes J, Dolman A (2013) El Niño–La Niña cycle and recent trends in continental evaporation. Nat Clim Chang 4:1–5.  https://doi.org/10.1038/nclimate2068 Google Scholar
  28. Moscatelli GN (1991) Los suelos de la region pampeana. In: Barsky O, Bearzotti S (eds) El Desarrollo Agropecuario Pampeano. INDEC - INTA - IICA, pp. 11–76Google Scholar
  29. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, Elliott J, Fujimori S, Hasegawah T, Heyhoed E, Kylei P, von Lampej M, Lotze-Campenk H, d’Croza DM, van Meijill H, van der Mensbrugghem D, Müllerk C, Poppk A, Robertson R, Robinson S, Schmidn E, Schmitzk C, Tabeaul A, Willenbockel D (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111(9):3274–3279CrossRefGoogle Scholar
  30. Penalba OC, Rivera JA (2016) Precipitation response to El Niño/La Niña events in southern South America—emphasis in regional drought occurrences. Adv Geosci 42:1–14.  https://doi.org/10.5194/adgeo-42-1-2016 CrossRefGoogle Scholar
  31. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193:120–145.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  32. Pérez S, Sierra E, López E, Nizzero G, Momo F, Massobrio M (2011) Abrupt changes in rainfall in the eastern area of La Pampa Province, Argentina. Theor Appl Climatol 103:159–165.  https://doi.org/10.1007/s00704-010-0290-y CrossRefGoogle Scholar
  33. Pérez S, Sierra E, Momo F, Massobrio M (2015) Changes in average annual precipitation in Argentina’s Pampa Region and their possible causes. Climate 3:150–167.  https://doi.org/10.3390/cli3010150 CrossRefGoogle Scholar
  34. Peterson T, Golubev V, Groisman P (1995) Evaporation losing its strength. Nature 377:687–688.  https://doi.org/10.1038/377687b0 CrossRefGoogle Scholar
  35. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126.  https://doi.org/10.2307/2346729 CrossRefGoogle Scholar
  36. Pohlert T (2016) Non-parametric trend tests and change-point detection. R package version 0.2.0. https://cran.r-project.org/package=trend
  37. Rayner DP (2007) Wind run changes: the dominant factor affecting pan evaporation trends in Australia. J Clim 20:3379–3394.  https://doi.org/10.1175/JCLI4181.1 CrossRefGoogle Scholar
  38. Re M, Barros VR (2009) Extreme rainfalls in SE South America. Clim Chang 96:119–136.  https://doi.org/10.1007/s10584-009-9619-x CrossRefGoogle Scholar
  39. Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411.  https://doi.org/10.1126/science.1075390 Google Scholar
  40. Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance. I. Principles and observations. Geogr Compass 3:746–760.  https://doi.org/10.1111/j.1749-8198.2008.00213.x CrossRefGoogle Scholar
  41. Rubi Blanchi A, Cravero SAC (2012) Atlas Climatico Digital de la Republica Argentina. Instituto Nacional de Tecnología Agropecuaria. https://www.visor.geointa.inta.gob.ar
  42. Rusticucci M (2012) Observed and simulated variability of extreme temperature events over South America. Atmos Res 106:1–17.  https://doi.org/10.1016/j.atmosres.2011.11.001 CrossRefGoogle Scholar
  43. Saurral RI, Camilloni IA, Barros VR (2017) Low-frequency variability and trends in centennial precipitation stations in southern South America. Int J Climatol 37:1774–1793.  https://doi.org/10.1002/joc.4810 CrossRefGoogle Scholar
  44. Scarpati O, Capriolo A (2011) Monitoring extreme hydrological events to maintain agricultural sustainability in Pampean flatlands, Argentina. In: Proceedings of the 1st World Sustain. ForumGoogle Scholar
  45. Scian B, Pierini J (2013) Variability and trends of extreme dry and wet seasonal precipitation in Argentina. A retrospective analysis. Atmosfera 26:3–26.  https://doi.org/10.1016/S0187-6236(13)71059-2 CrossRefGoogle Scholar
  46. Sherwood S, Fu Q (2014) A drier future? Science 343(80):737–739.  https://doi.org/10.1126/science.1247620 CrossRefGoogle Scholar
  47. Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res Atmos 115:1–21.  https://doi.org/10.1029/2009JD012442 Google Scholar
  48. Vautard R, Cattiaux J, Yiou P, Thépaut J-N, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761.  https://doi.org/10.1038/ngeo979 CrossRefGoogle Scholar
  49. Vicente-Serrano SM, Nieto R, Gimeno L, Azorin-Molina C, Drumond A, El Kenawy A, Dominguez-Castro F, Tomas-Burguera M, Peña-Gallardo M (2017) Recent changes of relative humidity: regional connection with land and ocean processes. Earth Syst Dyn Discuss:1–44.  https://doi.org/10.5194/esd-2017-43
  50. Vigglizo E, Jobággy E, Carreño L, Frank F, Aragon R, De Oro L, Salvador V (2009) The dynamics of cultivation and floods in arable lands of Central Argentina. Hydrol Earth Syst Sci 13:491–502CrossRefGoogle Scholar
  51. Wiebe K, Lotze-Campen H, Sands R, Tabeau A, van der Mensbrugghe D, Biewald A, Bodirsky B, Islam S, Kavallari A, Mason-D’Croz D, Müller C, Popp A, Robertson R, Robinson S, van Meijl H, Willenbockel D (2015) Climate change impact on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ Res Lett 10:085010CrossRefGoogle Scholar
  52. Willett KM, Dunn RJH, Thorne PW, Bell S, De Podesta M, Parker DE, Jones PD, Williams CN (2014) HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim Past 10:1983–2006.  https://doi.org/10.5194/cp-10-1983-2014 CrossRefGoogle Scholar
  53. Xing W, Wang W, Shao Q, Yu Z, Yang T, Fu J (2016) Periodic fluctuation of reference evapotranspiration during the past five decades: does evaporation paradox really exist in China? Sci Rep 6:39503.  https://doi.org/10.1038/srep39503 CrossRefGoogle Scholar
  54. Zhang P, Zhang J, Chen M (2017) Economic impacts of climate change on agriculture: the importance of additional climatic variables other than temperature and precipitation. J Environ Econom Manag 83:8–31CrossRefGoogle Scholar
  55. Zotarelli L, Dukes MD, Romero CC, Migliaccio KW, Morgan KT (2010) Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Recursos Biológicos, Centro de Investigaciones en Recursos NaturalesInstituto Nacional de Tecnología Agropecuaria (INTA)HurlinghamArgentina
  2. 2.Centre Eau Terre EnvironnementInstitut National de la Recherche Scientifique (INRS)QuebecCanada
  3. 3.Instituto de Clima y Agua, Centro de Investigaciones en Recursos NaturalesInstituto Nacional de Tecnología Agropecuaria (INTA)HurlinghamArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations