Advertisement

WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India

  • Prakash Pithani
  • Sachin D. Ghude
  • Thara Prabhakaran
  • Anand Karipot
  • Anupam Hazra
  • Rachana Kulkarni
  • Subharthi Chowdhuri
  • E. A. Resmi
  • Mahen Konwar
  • P. Murugavel
  • P. D. Safai
  • D. M. Chate
  • Y. Tiwari
  • R. K. Jenamani
  • M. Rajeevan
Original Paper

Abstract

The present study evaluates the performance of four planetary boundary layer (PBL) parameterization schemes combined with five cloud microphysics schemes in Weather Research Forecasting (WRF) model, specifically for an advection fog event occurred during 4–6 December 2014 at Barkachha, rural site in the Indo-Gangetic plain (IGP). For this purpose, the model was configured over the IGP with 2-km horizontal resolution, and results are compared with detailed micrometeorological data (surface meteorological parameters and fluxes, radiative fluxes, and surface layer wind profiles) gathered during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Integrated Ground Observational Campaign (IGOC) site located in the IGP. The meteorological conditions conducive for the fog formation have been evaluated. All of the tested PBL-microphysics combination showed substantial bias for surface temperature, radiation fluxes, and wind speed. None of the combination found to be superior in predicting the fog event; however, the local MYNN2.5 combination with the WSM3, WSM6, and Lin microphysics obtained slightly better result at the study location. In general, judging from all simulations of liquid water content (as an indicator for the fog), the above combinations were able to simulate the current fog event but the fog onset, duration, and dissipation were particularly offset.

Notes

Acknowledgments

We thank the Director, IITM, for his encouragement during the course of the study. Observational data used in this study were gathered as part of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment Integrated Ground Observational Campaign (CAIPEEX-IGOC) funded by MoES. The authors acknowledge ECMWF ERA Interim data used in this study. We thank the Sunitha Devi, India Meteorological Department (IMD), for availing satellite image and synoptic charts. The authors are also thankful to MODIS satellite images for public accesses used in this study. The authors are indebted to Karumuri Ramakrishna for the encouraging discussions. Most of the plots are plotted in Origin and MATLAB software. All model runs are carried out on the Aditya High Performance computing system at Indian Institute of Tropical Meteorology (IITM), Pune, India.

References

  1. Agarwal R, Jayaraman G, Anand S, Marimuthu P (2006) Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ Monit Assess 114:489–504CrossRefGoogle Scholar
  2. Baars J A, M Witiw, and A Al-Habash (2003) Determining fog type in the Los Angeles basin using historic surface observation data. Proc. 16th Conf. on Probability and Statistics in the Atmospheric Sciences, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, J3.8Google Scholar
  3. Badarinath KVS, Shailesh Kumar K, Anu Rani S, Roy PS (2009) Fog over Indo-Gangetic plains—a study using multisatellite data and ground observations. IEEE J Select Topics Appl Earth Observat Remote Sens 2:3CrossRefGoogle Scholar
  4. Bartok J, Bott A, Gera M (2012) Fog prediction for road traffic safety in a coastal desert region. Bound Lay Meteorol 145:485–506.  https://doi.org/10.1007/s10546012-9750-5 CrossRefGoogle Scholar
  5. Chaouch N, Temimi M, Weston M, Ghedira H (2017) Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos Res 187(2017):106–127CrossRefGoogle Scholar
  6. Charlson RJ, Pueschel RF, Horvath H (1967) The direct measuring of atmospheric light scattering coefficient for studies of visibility and pollution. Atmos Environ 1:469478CrossRefGoogle Scholar
  7. Craft PJ, Ward B (2015) Encyclopedia of atmospheric science 2nd edition, volume 2Google Scholar
  8. Dimri AP, Niyogi D, Barros AP, Ridley J, Mohanty UC, Yasunari T, Sikka DR (2015) Western Disturbances. A review. Rev Geophys 53:225–246.  https://doi.org/10.1002/2014RG000460 CrossRefGoogle Scholar
  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  10. Ghude S et al (2017) Winter fog experiment over the Indo-Gangetic plains of India. Curr Sci 112:2017CrossRefGoogle Scholar
  11. Gilliam RC, Pleim JE (2010) Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J Appl Meteorol Climatol 49(4):760–774CrossRefGoogle Scholar
  12. Guichard F, Parsons DB, Dudhia J, Bresh J (2003) Evaluating mesoscale model prediction of clouds and radiation with SGP ARM data over a seasonal timescale. Mon Weather Rev 131:926–944.  https://doi.org/10.1175/1520-0493(2003)131<0926:EMMPOC>2.0.CO;2 CrossRefGoogle Scholar
  13. Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Muller M, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164:1121–1159CrossRefGoogle Scholar
  14. Gultepe I, Hansen B, Cober SG, Pearson G, Milbrandt JA, Platnick S, Taylor P, Gordon M, Oakley JP (2009) The fog remote sensing and modeling field project. Bull Amer Meteorol Soc 90:341–359CrossRefGoogle Scholar
  15. Hariprasad KBRR, Srinivas CV, Bagavath Singh A, Vijaya Bhaskara Rao S, Baskaran R, Venkatraman B (2014) Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmos Res 145:27–44CrossRefGoogle Scholar
  16. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  17. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  18. Hong YS, Lim SK, Lee YH, Ha JC, Kim HW, Ham SJ, Dudhia J (2010) Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv Meteorol 2010:1–10.  https://doi.org/10.1155/2010/707253 CrossRefGoogle Scholar
  19. Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429–1443CrossRefGoogle Scholar
  20. Jenamani RK (2007) Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Curr Sci 93:314–322Google Scholar
  21. Johnson RW (1981) Daytime visibility and nephelometer measurements related to its determination. Atmos Environ 15:1835–1845CrossRefGoogle Scholar
  22. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford Univ Press, New York 289 pp.Google Scholar
  23. Kleczek MA, Steeneveld GJ, Holtslag AAM (2014) Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary layer schemes, boundary conditions and spin-up. Bound-Layer Meteorol 152:213–243.  https://doi.org/10.1007/s10546-014-9925-3 CrossRefGoogle Scholar
  24. Kulkarni RG (2016) Wintertime fog in Delhi and its effect on aviation economy. MSc thesis submitted to Savitribai Phule Pune University, Pune, IndiaGoogle Scholar
  25. Lim KSS, Hong SY (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138(5):1587–1612CrossRefGoogle Scholar
  26. Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22(6):1065–1092CrossRefGoogle Scholar
  27. Milovac J, Warrach-Sagi K, Behrendt A, Späth F, Ingwersen J, Wulfmeyer V (2016) Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption laser measurements. J Geophys Res Atmos 121:624–649.  https://doi.org/10.1002/2015JD023927
  28. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  29. Mohan M, Bhati S (2011) Analysis of WRF model performance over subtropical region of Delhi, India. Adv Meteorol.  https://doi.org/10.1155/2011/621235
  30. Mohan M, Payra S (2009) Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environ Monit Assess 151(1–4):265–277CrossRefGoogle Scholar
  31. Monin AS, Obukhov AM (1954) Basic laws of turulent mixing in the atmosphere near the ground. Tr Inst Teor Geofiz Akad Nauk SSSR 24:1963–1987Google Scholar
  32. Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one and two-moment schemes. Mon Weather Rev 137:991–1006CrossRefGoogle Scholar
  33. Nakanishi M, Niino H (2004) An improved Mellor-Yamada Level-3 model: its numerical stability and application to a regional prediction of advection fog. Bound-Layer Meteorol 119(2):397–407CrossRefGoogle Scholar
  34. NCEP (2011) NCEP annuval report 2011. http://nomad1.ncep.noaa.gov/director/ucar_reports/UCACN_Report_Dec2011.pdf. Accessed 12 June 2018
  35. Pasricha PK, Gera BS, Shastri S, Maini HK, Ghosh AB, Tiwari MK, Garg SC (2003) Role of water vapour greenhouse effect in the forecasting of fog occurrence. Bound-Layer Meteorol 107:469–482CrossRefGoogle Scholar
  36. Payra S, Mohan M (2014) Multirule based diagnostic approach for the fog predictions using WRF modeling tool. Adv Meteorol 456065. doi;  https://doi.org/10.1155/2014/456065
  37. Pleim JE (2007) A combined local and non-local closure model for the atmospheric boundary layer. Part 1: model description and testing. J Appl Meteorol Climatol 46:1383–1395CrossRefGoogle Scholar
  38. Rannik U, Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Bound-Layer Meteorol 91:259–280CrossRefGoogle Scholar
  39. Remesan R, Bellerby T, Hofman I, Frostick L (2014) WRF model sensitivity to choice of parameterization: a study of the ‘York Flood 1999’. Theor Appl Climatol 122:229–247.  https://doi.org/10.1007/s00704-014-1282-0 CrossRefGoogle Scholar
  40. Roach W (1995) Back to basics: fog: part 2—the formation and dissipation of land fog. Weather 50:7–11CrossRefGoogle Scholar
  41. Román-Cascón C, Yagüe C, Sastre M, Maqueda G, Salamanca F, Viana S (2012) Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv Sci Res 8(1):11–18CrossRefGoogle Scholar
  42. Sawaisarje GK, khare P, Shirke CV, Deepakumar S, Narkhede NM (2014) Study of winter fog over Indian subcontinent: climatological perspectives. MAUSAM 65(1):19–28Google Scholar
  43. Shin HH, Hong SY (2011) Inter comparison of planetary boundary-layer parameterizations in WRF model for a single day from CASES-99. Bound-Lay Meteorol 139:261–281CrossRefGoogle Scholar
  44. Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR Technical Note. NCAR/TN-475+STRGoogle Scholar
  45. Steeneveld G, Hartogensis OK, Moene AF, Klein Baltink H, Holtslag AAM (2007) Evaluation of WRF model improvements which novel boundary-layer observations focus on diurnal cycle and stable boundary layer. WRF Visitors program report, www.dtcenter.org/visitors/reports_07/SteeneveldWRF_DTC-report_def.pdf
  46. Steeneveld G, Holtslag AAM, Nappo CJ, van de Wiel BJH, Mahrt L (2008) Exploring the possible role of small scale terrain drag on stable boundary layers over land. J Clim Appl Meteorol 47:2518–2253CrossRefGoogle Scholar
  47. Steeneveld GJ, Ronda RJ, AAM H (2015) The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound-Layer Meteorol 154:265–289.  https://doi.org/10.1007/s10546-014-9973-8 CrossRefGoogle Scholar
  48. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 670CrossRefGoogle Scholar
  49. Sukorianski S, Galperin B, Perov V (2005) Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice. Bound-Layer Meteorol 117:231–257CrossRefGoogle Scholar
  50. Syed FS, Kornich H, Tjernstrom M (2012) On the fog variability over south Asia. Clim Dyn 39:2993–3005CrossRefGoogle Scholar
  51. Tardif R, Rasmussen RM (2007) Event-based climatology and typology of fog in the New York City region. J Appl Meteorol Climatol 46:1141–1168CrossRefGoogle Scholar
  52. Teixeira J (1999) Simulation of fog with the ECMWF prognostic cloud scheme. Q J R Meteorol Soc 125:529–552CrossRefGoogle Scholar
  53. Tudor M (2010) Impact of horizontal diffusion, radiation and cloudiness parametrization schemes on fog forecasting in valleys. Meteorog Atmos Phys 108:57–70CrossRefGoogle Scholar
  54. Van der Velde IR, Steeneveld GJ, Holtslag AAM (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev 38(11):4237–4253CrossRefGoogle Scholar
  55. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  56. Zhong S, In H, Clements C (2007) Impact of turbulence, land surface, and radiation parameterizations on simulated boundary layer properties in a coastal environment. J Geophys Res Atmos 112:D13110.  https://doi.org/10.1029/2006JD008274 Google Scholar
  57. Zhou B, Du J (2010) Fog prediction from a multimodal mesoscale ensemble prediction system. Weather Forecast 25:303–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Prakash Pithani
    • 1
    • 2
  • Sachin D. Ghude
    • 1
  • Thara Prabhakaran
    • 1
  • Anand Karipot
    • 3
  • Anupam Hazra
    • 1
  • Rachana Kulkarni
    • 1
    • 3
  • Subharthi Chowdhuri
    • 1
  • E. A. Resmi
    • 4
  • Mahen Konwar
    • 1
  • P. Murugavel
    • 1
  • P. D. Safai
    • 1
  • D. M. Chate
    • 1
  • Y. Tiwari
    • 1
  • R. K. Jenamani
    • 5
  • M. Rajeevan
    • 6
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Meteorology & OceanographyAndhra UniversityVisakhapatnamIndia
  3. 3.Savitribai Phule Pune UniversityPuneIndia
  4. 4.National Centre for Earth Science StudiesThiruvananthapuramIndia
  5. 5.India Meteorological DepartmentNew DelhiIndia
  6. 6.Ministry of Earth SciencesNew DelhiIndia

Personalised recommendations