Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 457–473 | Cite as

Unidirectional trends in annual and seasonal climate and extremes in Egypt

  • Mohamed Salem NashwanEmail author
  • Shamsuddin Shahid
  • Norhan Abd Rahim
Original Paper

Abstract

The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948–2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08–0.29 °C/decade) much faster compared to maximum temperature (0.07–0.24 °C/decade) and therefore, a decrease in diurnal temperature range (− 0.01 to − 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

Notes

Acknowledgments

The authors are grateful to Universiti Teknologi Malaysia for providing financial support for this research through GUP Grant No. 19H44.

References

  1. Aadhar S, Mishra V (2017) High-resolution near real-time drought monitoring in South Asia. Sci Data 4:170145.  https://doi.org/10.1038/sdata.2017.145 CrossRefGoogle Scholar
  2. Ahmed K, Shahid S, Chung E-S, Ismail T, Wang X-J (2017) Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim Res 74:95–107CrossRefGoogle Scholar
  3. Aich V et al (2017) Climate change in Afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)—South Asia simulations. Climate 5:38.  https://doi.org/10.3390/cli5020038 CrossRefGoogle Scholar
  4. Aloysius N, Saiers J (2017) Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin. Hydrol Earth Syst Sci 21:4115–4130.  https://doi.org/10.5194/hess-21-4115-2017 CrossRefGoogle Scholar
  5. Awange JL, Mpelasoka F, Goncalves RM (2016) When every drop counts: analysis of droughts in Brazil for the 1901–2013 period. Sci Total Environ 566:1472–1488.  https://doi.org/10.1016/j.scitotenv.2016.06.031 CrossRefGoogle Scholar
  6. Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. Wiley Interdiscip Rev Clim Chang 6:151–169.  https://doi.org/10.1002/wcc.316 CrossRefGoogle Scholar
  7. Braganza K, Karoly D, Hirst A, Mann M, Stott P, Stouffer R, Tett S (2003) Simple indices of global climate variability and change: part I—variability and correlation structure. Clim Dyn 20:491–502CrossRefGoogle Scholar
  8. Cardil A, Salis M, Spano D, Delogu G, Molina Terrén D (2014) Large wildland fires and extreme temperatures in Sardinia (Italy). iForest Biogeosci For 7:162–169.  https://doi.org/10.3832/ifor1090-007 CrossRefGoogle Scholar
  9. Chiew FH (2006) An overview of methods for estimating climate change impact on runoff. In: 30th Hydrology & Water Resources Symposium: past, present & future. Conference Design, p. 643Google Scholar
  10. Chu P-S, Wang J-B (1997) Recent climate change in the tropical Western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. J Clim 10:636–646.  https://doi.org/10.1175/1520-0442(1997)010<0636:rccitt>2.0.co;2 CrossRefGoogle Scholar
  11. Domroes M, El-Tantawi A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63.  https://doi.org/10.1002/joc.1114 CrossRefGoogle Scholar
  12. Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci Total Environ 573:1536–1553.  https://doi.org/10.1016/j.scitotenv.2016.08.213 CrossRefGoogle Scholar
  13. Dutta S, Chaudhuri G (2015) Evaluating environmental sensitivity of arid and semiarid regions in northeastern Rajasthan, India. Geogr Rev 105:441–461.  https://doi.org/10.1111/j.1931-0846.2015.12093.x CrossRefGoogle Scholar
  14. Ehsanzadeh E, Adamowski K (2010) Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence. Hydrol Process 24:970–980.  https://doi.org/10.1002/hyp.7533 CrossRefGoogle Scholar
  15. Elmallah ES, Elsharkawy SG (2011) Influence of circulation indices upon winter temperature variability in Egypt. J Atmos Sol Terr Phys 73:439–448.  https://doi.org/10.1016/j.jastp.2010.10.013 CrossRefGoogle Scholar
  16. Elnazer AA, Salman SA, Asmoay AS (2017) Flash flood hazard affected Ras Gharib City, Red Sea, Egypt: a proposed flash flood channel. Nat Hazards 89:1389–1400.  https://doi.org/10.1007/s11069-017-3030-0 CrossRefGoogle Scholar
  17. Fathian F, Aliyari H, Kahya E, Dehghan Z (2016) Temporal trends in precipitation using spatial techniques in GIS over Urmia Lake Basin, Iran. Int J Hydrol Sci Technol 6:62–81CrossRefGoogle Scholar
  18. Griffiths JF (1966) Applied climatology: an introductionGoogle Scholar
  19. Hafez YY, Almazroui M (2016) Study of the relationship between African ITCZ variability and an extreme heat wave on Egypt in summer 2015. Arab J Geosci 9:1–17.  https://doi.org/10.1007/s12517-016-2497-4 CrossRefGoogle Scholar
  20. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363.  https://doi.org/10.1016/j.jhydrol.2007.11.009 CrossRefGoogle Scholar
  21. Hamed KH (2009) Exact distribution of the Mann–Kendall trend test statistic for persistent data. J Hydrol 365:86–94.  https://doi.org/10.1016/j.jhydrol.2008.11.024 CrossRefGoogle Scholar
  22. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196.  https://doi.org/10.1016/S0022-1694(97)00125-X CrossRefGoogle Scholar
  23. Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999.  https://doi.org/10.1002/joc.1043 CrossRefGoogle Scholar
  24. Hasanean HM, Basset HA (2006) Variability of summer temperature over Egypt. Int J Climatol 26:1619–1634.  https://doi.org/10.1002/joc.1321 CrossRefGoogle Scholar
  25. Hereher ME (2016) Time series trends of land surface temperatures in Egypt: a signal for global warming. Environ Earth Sci 75.  https://doi.org/10.1007/s12665-016-6024-4
  26. Iliopoulou T, Papalexiou SM, Markonis Y, Koutsoyiannis D (2016) Revisiting long-range dependence in annual precipitation. J Hydrol 556:891–900.  https://doi.org/10.1016/j.jhydrol.2016.04.015 CrossRefGoogle Scholar
  27. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability—part B: regional aspects—contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi:citeulike-article-id:13497155Google Scholar
  28. Karoly DJ, Braganza K, Stott PA, Arblaster JM, Meehl GA, Broccoli AJ, Dixon KW (2003) Detection of a human influence on North American climate. Science 302:1200–1203CrossRefGoogle Scholar
  29. Kendall MG (1948) Rank correlation methodsGoogle Scholar
  30. Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24.  https://doi.org/10.1623/hysj.48.1.3.43481 CrossRefGoogle Scholar
  31. Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183.  https://doi.org/10.1016/j.jhydrol.2009.06.012 CrossRefGoogle Scholar
  32. Lacombe G, Hoanh CT, Smakhtin V (2012) Multi-year variability or unidirectional trends? Mapping long-term precipitation and temperature changes in continental Southeast Asia using PRECIS regional climate model. Clim Chang 113:285–299.  https://doi.org/10.1007/s10584-011-0359-3 CrossRefGoogle Scholar
  33. Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260.  https://doi.org/10.1007/s10584-016-1665-6 CrossRefGoogle Scholar
  34. Ludescher J, Bunde A, Franzke CLE, Schellnhuber HJ (2016) Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Clim Dyn 46:263–271.  https://doi.org/10.1007/s00382-015-2582-5 CrossRefGoogle Scholar
  35. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259.  https://doi.org/10.2307/1907187 CrossRefGoogle Scholar
  36. Markonis Y, Koutsoyiannis D (2013) Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch cycles with Hurst–Kolmogorov. Dyn Surv Geophys 34:181–207.  https://doi.org/10.1007/s10712-012-9208-9 CrossRefGoogle Scholar
  37. Markonis Y, Batelis SC, Dimakos Y, Moschou E, Koutsoyiannis D (2017) Temporal and spatial variability of rainfall over Greece. Theor Appl Climatol 130:217–232.  https://doi.org/10.1007/s00704-016-1878-7 CrossRefGoogle Scholar
  38. McLeod AI, Hipel KW (1978) Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon. Water Resour Res 14:491–508.  https://doi.org/10.1029/WR014i003p00491 CrossRefGoogle Scholar
  39. MWRI (2005) Water for the future. National Water Resources Plan 2017. Ministry of Water Resources and IrrigationGoogle Scholar
  40. Niero M, Ingvordsen CH, Peltonen-Sainio P, Jalli M, Lyngkjær MF, Hauschild MZ, Jørgensen RB (2015) Eco-efficient production of spring barley in a changed climate: a life cycle assessment including primary data from future climate scenarios. Agric Syst 136:46–60.  https://doi.org/10.1016/j.agsy.2015.02.007 CrossRefGoogle Scholar
  41. Onyutha C, Willems P (2017) Influence of spatial and temporal scales on statistical analyses of rainfall variability in the River Nile basin. Dyn Atmos Oceans 77:26–42.  https://doi.org/10.1016/j.dynatmoce.2016.10.008 CrossRefGoogle Scholar
  42. Onyutha C, Tabari H, Taye MT, Nyandwaro GN, Willems P (2016) Analyses of rainfall trends in the Nile River basin. J Hydro Environ Res 13:36–51.  https://doi.org/10.1016/j.jher.2015.09.002 CrossRefGoogle Scholar
  43. Orth R, Zscheischler J, Seneviratne SI (2016) Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci Rep 6:28334.  https://doi.org/10.1038/srep28334 CrossRefGoogle Scholar
  44. Pour SH, Harun SB, Shahid S (2014) Genetic programming for the downscaling of extreme rainfall events on the East Coast of Peninsular Malaysia. Atmosphere 5:914–936.  https://doi.org/10.3390/atmos5040914 CrossRefGoogle Scholar
  45. Ragab O, Negm A (2017) Trend analysis of precipitation data: a case study of Blue Nile Basin, Africa 56.  https://doi.org/10.1007/698_2016_114
  46. Rishmawi K, Prince S, Xue Y (2016) Vegetation responses to climate variability in the northern arid to sub-humid zones of sub-Saharan Africa. Remote Sens 8:910.  https://doi.org/10.3390/rs8110910 CrossRefGoogle Scholar
  47. Roushdi M, Mostafa H, Kheireldin K (2016) Present and future climate extreme indices over Sinai Peninsula, Egypt. Int J Environ Chem Ecol Geol Geophys Eng 109:85–90Google Scholar
  48. Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017a) Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pac J Atmos Sci 53:489–500.  https://doi.org/10.1007/s13143-017-0051-2 CrossRefGoogle Scholar
  49. Sa’adi Z, Shahid S, Ismail T, Chung E-S, Wang X-J (2017b) Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol Atmos Phys.  https://doi.org/10.1007/s00703-017-0564-3
  50. Salguero-Gómez R, Siewert W, Casper BB, Tielbörger K (2012) A demographic approach to study effects of climate change in desert plants. Philos Trans R Soc B Biol Sci 367:3100–3114.  https://doi.org/10.1098/rstb.2012.0074 CrossRefGoogle Scholar
  51. Salman SA, Shahid S, Ismail T, Chung E-S, Al-Abadi AM (2017) Long-term trends in daily temperature extremes in Iraq. Atmos Res 198:97–107.  https://doi.org/10.1016/j.atmosres.2017.08.011 CrossRefGoogle Scholar
  52. Seager R, Naik N, Baethgen W, Robertson A, Kushnir Y, Nakamura J, Jurburg S (2010) Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J Clim 23:5517–5539CrossRefGoogle Scholar
  53. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389.  https://doi.org/10.1080/01621459.1968.10480934 CrossRefGoogle Scholar
  54. Serra C, Burgueño A, Martínez MD, Lana X (2006) Trends in dry spells across Catalonia (NE Spain) during the second half of the 20th century. Theor Appl Climatol 85:165–183.  https://doi.org/10.1007/s00704-005-0184-6 CrossRefGoogle Scholar
  55. Shahid S (2009) Spatio-temporal variability of rainfall over Bangladesh during the time period 1969-2003. Asia-Pac J Atmos Sci 45:375–389Google Scholar
  56. Shahid S (2010) Probable impacts of climate change on public health in Bangladesh. Asia-Pac J Public Health 22:310–319.  https://doi.org/10.1177/1010539509335499 CrossRefGoogle Scholar
  57. Shahid S (2011) Trends in extreme rainfall events of Bangladesh. Theor Appl Climatol 104:489–499.  https://doi.org/10.1007/s00704-010-0363-y CrossRefGoogle Scholar
  58. Shahid S, Harun SB, Katimon A (2012) Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmos Res 118:260–270.  https://doi.org/10.1016/j.atmosres.2012.07.008 CrossRefGoogle Scholar
  59. Shahid S, Wang XJ, Harun S (2014) Unidirectional trends in rainfall and temperature of Bangladesh. In: IAHS-AISH Proceedings and Reports. pp 177–182Google Scholar
  60. Shahid S, Hadi PS, Xiaojun W, Ahmed SS, Anil M, bin IT (2017) Impacts and adaptation to climate change in Malaysian real estate. Int J Clim Chang Strateg Manag 9:87–103.  https://doi.org/10.1108/IJCCSM-01-2016-0001 CrossRefGoogle Scholar
  61. Shaltout M, El Gindy A, Omstedt A (2013) Recent climate trends and future scenarios along the Egyptian Mediterranean coast. Geofizika 30:19–41Google Scholar
  62. Sheffield J, Wood EF (2007) Characteristics of global and regional drought, 1950–2000: analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J Geophys Res Atmos 112:n/a-n/a.  https://doi.org/10.1029/2006JD008288
  63. Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological Forcings for land surface modeling. J Clim 19:3088–3111.  https://doi.org/10.1175/jcli3790.1 CrossRefGoogle Scholar
  64. Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435.  https://doi.org/10.1038/nature11575 CrossRefGoogle Scholar
  65. Shourav MSA, Shahid S, Singh B, Mohsenipour M, Chung E-S, Wang X-J (2017) Potential impact of climate change on residential energy consumption in Dhaka City. Environ Model Assess 23:131–140.  https://doi.org/10.1007/s10666-017-9571-5 CrossRefGoogle Scholar
  66. Sillmann J, Kharin V, Zwiers F, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493.  https://doi.org/10.1002/jgrd.50188 CrossRefGoogle Scholar
  67. Su BD, Jiang T, Jin WB (2006) Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor Appl Climatol 83:139–151.  https://doi.org/10.1007/s00704-005-0139-y CrossRefGoogle Scholar
  68. Tyralis H (2016) HKprocess: Hurst-Kolmogorov process. R package version 0.0-2Google Scholar
  69. Wang X-j, Zhang J-y, Shahid S, Guan E-h, Wu Y-x, Gao J, He R-m (2016) Adaptation to climate change impacts on water demand. Mitig Adapt Strateg Glob Chang 21:81–99.  https://doi.org/10.1007/s11027-014-9571-6 CrossRefGoogle Scholar
  70. Weisheimer A, Schaller N, O’Reilly C, MacLeod DA, Palmer T (2017) Atmospheric seasonal forecasts of the twentieth century: multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. Q J R Meteorol Soc 143:917–926CrossRefGoogle Scholar
  71. WMO (2016) Provisional WMO statement on the status of the global climate in 2016Google Scholar
  72. Woollings T, Franzke C, Hodson D, Dong B, Barnes EA, Raible C, Pinto J (2015) Contrasting interannual and multidecadal NAO variability. Clim Dyn 45:539–556CrossRefGoogle Scholar
  73. Wu C, Hu BX, Huang G, Zhang H (2017) Effects of climate and terrestrial storage on temporal variability of actual evapotranspiration. J Hydrol 549:388–403.  https://doi.org/10.1016/j.jhydrol.2017.04.012 CrossRefGoogle Scholar
  74. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 38Google Scholar
  75. Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218.  https://doi.org/10.1023/B:Warm.0000043140.61082.60 CrossRefGoogle Scholar
  76. Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17:1945–1952.  https://doi.org/10.1175/1520-0442(2004)017<1945:mceotd>2.0.co;2 CrossRefGoogle Scholar
  77. Zhu Y, Lin Z, Zhao Y, Li H, He F, Zhai J, Wang L, Wang Q (2017) Flood simulations and uncertainty analysis for the pearl river basin using the coupled land surface and hydrological model system. Water 9:391.  https://doi.org/10.3390/w9060391 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Salem Nashwan
    • 1
    • 2
    Email author
  • Shamsuddin Shahid
    • 1
  • Norhan Abd Rahim
    • 1
  1. 1.Faculty of Civil EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  2. 2.Faculty of Engineering and TechnologyArab Academy for Science, Technology and Maritime Transport (AASTMT)CairoEgypt

Personalised recommendations