Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 321–331 | Cite as

Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

  • Kad Pratik
  • Anant ParekhEmail author
  • Ananya Karmakar
  • Jasti S. Chowdary
  • C. Gnanaseelan
Original Paper
  • 266 Downloads

Abstract

The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this  experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

Keywords

Upper ocean warming Arabian Sea Monsoon circulation and ocean dynamics 

Notes

Acknowledgements

Acknowledgements are due to ECMWF and INCOIS for datasets and GFDL, Princeton for MOM5. We also thank Dr. Kala Raj and Deepti Gnanaseelan for careful proofreading. Pratik Kad benefitted by training conducted by Mr. AbhaySingh Rajput for Science communication. PyFerret is used for preparing manuscript figures. The authors are thankful to editor and reviewers for providing important suggestions.

Funding information

We wish to acknowledge the support from ESSO-IITM and MoES.

References

  1. Aneesh S, Sijikumar S (2016) Changes in the south Asian monsoon low level jet during recent decades and its role in the monsoon water cycle. J Atmos Solar - Terrestrial Phys 138:47–53CrossRefGoogle Scholar
  2. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161.  https://doi.org/10.1002/qj.2063 CrossRefGoogle Scholar
  3. Bauer S, Hitchcock GL, Olson DB (1991) Influence of monsoonally-forced Ekman dynamics upon the surface layer depth and plankton biomass distribution in the Arabian Sea. Deep-Sea Res 38:531–553CrossRefGoogle Scholar
  4. Bryan K, Lewis LJ (1979) A water mass model of the world ocean. J Geophys Res Oceans 84(C5):2503–2517CrossRefGoogle Scholar
  5. Chakraborty A, Nanjundiah RS, Srinivasan J (2009) Impact of African orography and the Indian summer monsoon on the low-level Somali jet. Int J Climatol 29:983–992.  https://doi.org/10.1002/joc.1720 CrossRefGoogle Scholar
  6. Colborn, J. G. (1975), Thermal structure of the Indian Ocean. IIOE Oceanogr. Monogr., vol. 2, 173 pp., Univ. of Hawaii Press, HonoluluGoogle Scholar
  7. de Boyer Montegut C, Mignot CJ, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res 112:C06011.  https://doi.org/10.1029/2006JC003953 CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, andVitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  9. Duing W, Leetma A (1980) Arabian Sea cooling: a preliminary heat budget. J Phys Oceanogr 10:307–312CrossRefGoogle Scholar
  10. Evan AT, Kossin JP, Chul C, Ramanathan V (2011) Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479(7371):94–97.  https://doi.org/10.1038/nature10552 CrossRefGoogle Scholar
  11. Findlater J (1966) Cross-equatorail jet streams at low levels over Kenya. Meteor Mag 95:353–364Google Scholar
  12. Fischer AS, Weller RA, Rudnick DL, Eriksen CC, Lee CM, Brink KH, Fox CA, Leben RR (2002) Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea. Deep-Sea Res Part II Top Stud Oceanogr 49:2231–2264CrossRefGoogle Scholar
  13. Foxton P (1965) A mass fish mortality on the Somali coast. Deep-Sea Res 12:17–19Google Scholar
  14. Griffies SM, Gnanadesikan A, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, Rosati A, Russell J, Samuels BL, Spelman MJ, Winton M, Zhang R (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79CrossRefGoogle Scholar
  15. Griffies, S.M., (2012), Elements of the modular ocean model (MOM): 2012 release. GFDL Ocean group technical report no. 7, Princeton, NJGoogle Scholar
  16. Joseph PV, Raman PL (1966) Existence of low level westerly jetstream over peninsular India during July. Indian J Meteorol Geophys 17:407–410Google Scholar
  17. Karmakar A, Parekh A, Chowdary JS, Gnanaseelan C (2017) Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products. Clim Dyn:1–23.  https://doi.org/10.1007/s00382-017-3910-8
  18. Keen TR, Kindle JC, Young DK (1997) The interaction of southwest monsoon upwelling, advection and primary production in the northwest Arabian Sea. J Mar Syst 13:61–82.  https://doi.org/10.1016/S0924-7963(97)00003-1 CrossRefGoogle Scholar
  19. Konwar M, Parekh A, Goswami BN (2012) Dynamics of east–west asymmetry of Indian summer monsoon rainfall trends in recent decades. Geophy Res Lett 39:1–6.  https://doi.org/10.1029/2012GL052018 CrossRefGoogle Scholar
  20. Kothawale DR, Singh HN (2017) Recent trends in tropospheric temperature over India during the period 1971–2015. Earth Space Sci 4:240–246.  https://doi.org/10.1002/2016EA000246 CrossRefGoogle Scholar
  21. Lakshmi V, Parekh A, Sarkar A (2009) Bimodal variation of SST and related physical processes over the North Indian Ocean: special emphasis on satellite observations. Int J Remote Sensing 30:5865–5876CrossRefGoogle Scholar
  22. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2):341–364CrossRefGoogle Scholar
  23. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterization. Rev Geophys 32:363–403.  https://doi.org/10.1029/94RG01872 CrossRefGoogle Scholar
  24. Large, W., and S. Yeager, (2004), Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Tech. Rep. NCAR/TN-460+STR, National Center for Atmospheric ResearchGoogle Scholar
  25. Levitus, S., Boyer, T., Conkright, M., Johnson, D., O’Brien, T., J.Antonov, Stephens, C. and Gelfeld, R. (1998), World Ocean Database Atlas NESDIS 18, NOAAGoogle Scholar
  26. Manizza M, Le Quéré C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32(5)Google Scholar
  27. McCreary JP, Kundu PK (1989) A numerical investigation of the sea surface temperature variability in the Arabian Sea. J Geophys Res 94:16097–16114CrossRefGoogle Scholar
  28. Molinari J, Dudek M (1986) Implicit versus explicit convective heating in numerical weather prediction models. Mon Weather Rev 114(10):1822–1831CrossRefGoogle Scholar
  29. Murtugudde R, Seager R, Thoppil P (2007) Arabian Sea response to monsoon variations. Paleoceanography 22.  https://doi.org/10.1029/2007PA001467
  30. Naqvi S, Naik H, Narvekar P (2003) The Arabian Sea. In: Black K, Shimmield G (eds) Biogeochemistry. Blackwell, Oxford, UK., pp 156–206Google Scholar
  31. Parekh A, Gnanaseelan C, Deepa JS, Karmakar A, Chowdary JS (2017) Sea level variability and trends in the North Indian Ocean. In: Observed climate variability and change over the Indian region. Springer, Singapore, pp 181–192.  https://doi.org/10.1007/978-981-10-2531-0 CrossRefGoogle Scholar
  32. Prasanna Kumar S, Madhupratap M, Dileepkumar M, Muraleedharan P, DeSouza S, Gauns M, Sarma V (2001) High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr Sci 81(12):1633–1638Google Scholar
  33. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543.  https://doi.org/10.1007/s00382-011-1115-0 CrossRefGoogle Scholar
  34. Rahul S, Gnanaseelan C (2013) Net heat flux over the Indian Ocean: trends, driving mechanisms, and uncertainties. IEEE Geosci Remote Sens Lett 10(4):776–780CrossRefGoogle Scholar
  35. Rahul S, Gnanaseelan C (2016) Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean? Clim Dyn 46(11–12):3617–3632.  https://doi.org/10.1007/s00382-015-2790-z CrossRefGoogle Scholar
  36. Ramesh Babu V, Sastry JS (1984) Summer cooling in the east central Arabian Sea: a process of dynamic response to the southwest monsoon. Mausam 35:17–26Google Scholar
  37. Rixen T, Haake B, Ittekkot V (2000) Sedimentation in the western Arabian Sea the role of coastal and open-ocean upwelling. Deep-Sea Res II Top Stud Oceanogr 47:2155–2178.  https://doi.org/10.1016/S0967-0645(00)00020-5 CrossRefGoogle Scholar
  38. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications 6:7423.  https://doi.org/10.1038/ncomms8423 CrossRefGoogle Scholar
  39. Roxy MK, Modi A, Murtugudde R, Valsala V, Panickal S, Prasanna Kumar S, Ravichandran M, Vichi M, Lévy M (2016) A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys Res Lett 43:826–833.  https://doi.org/10.1002/2015GL066979 CrossRefGoogle Scholar
  40. Sandeep S, Ajayamohan RS (2015) Poleward shift in Indian summer monsoon low level Jetstream under global warming. Clim Dyn 45:337–351.  https://doi.org/10.1007/s00382-014-2261-y CrossRefGoogle Scholar
  41. Sastry JS, Babu VR (1985) Summer cooling of the Arabian Sea—a review. Proc. Indian Acad. Sci. (Earth Planet Sci.) 94:117.  https://doi.org/10.1007/BF02871944 Google Scholar
  42. Schott F (1983) Monsoon response of the Somali current and associated upwelling. Prog Oceanogr 21:357–381CrossRefGoogle Scholar
  43. Schott F, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  44. Shenoi SSC, Shankar D, Shetye SR (2002) Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. J Geophys Res 107(C6).  https://doi.org/10.1029/2000JC000679
  45. Swapna P, Krishnan R, Wallace JM (2014) Indian Ocean and monsoon coupled interactions in a warming environment. Clim Dyn. 42:2439–2454.  https://doi.org/10.1007/s00382-013-1787-8 CrossRefGoogle Scholar
  46. Vinayachandran PN, Chauhan P, Mohan M, Nayak S (2004) Biological response of the sea around Sri Lanka to summer monsoon. Geophys Res Lett 31:L01302.  https://doi.org/10.1029/2003GL018533 Google Scholar
  47. Weller RA, Fischer AS, Rudnick DL, Eriksen CC, Dickey TD, Marra J, Fox C, Leben R (2002) Moored observations of upper-ocean response to the monsoons in the Arabian Sea during 1994–1995. Deep-Sea Res II Top Stud Oceanogr 49:2195–2230CrossRefGoogle Scholar
  48. Wiggert J, Hood R, Banse K, Kindle J (2005) Monsoon-driven biogeochemical processes in the Arabian Sea. Prog Oceanogr 65(2–4):176–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Tropical Meteorology (IITM)PuneIndia
  2. 2.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations