Advertisement

Theoretical and Applied Climatology

, Volume 136, Issue 1–2, pp 775–789 | Cite as

Spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico

  • Osias Ruiz-AlvarezEmail author
  • Vijay P. Singh
  • Juan Enciso-Medina
  • Clyde Munster
  • Ronald Kaiser
  • Ronald Ernesto Ontiveros-Capurata
  • Luis Antonio Diaz-Garcia
  • Carlos Antonio Costa dos Santos
Original Paper
  • 179 Downloads

Abstract

Emission of greenhouse gases is being alleged to be causing climate change in different regions of the world. The objective of this study was to analyze the spatio-temporal trends of monthly evaporation at 52 weather stations in the state of Aguascalientes (Mexico) which have hydrometeorological records of long periods. The autocorrelation was eliminated with an auto-regressive model, and the trend was determined using the Spearman (S) and Kendall (K) tests. The statistical significance of the trend was determined with the Spearman correlation coefficient (rs) and the Z statistic (the test statistic of the normal distribution) both indicated that that there were statistically significant trends in 107 time series, of these 88 series had negative trends and 19 series had positive trends. Negative trends were present in all months of the year, while positive trends occurred from February to May and from October to December only. The reduction of evaporation from − 4.10 to − 20.50 mm/month/year from June to September showed a hopeful future scenario for rainfed agriculture. Irrigated agriculture during dry months could have a reduction of irrigation requirements as a consequence of the reduction in reference and crop evapotranspiration. The evaporation increase during dry months could increase irrigation requirements and pumping, mainly in March, April, and November when there are trends with increases of about 26.90, 24.60, and 23.90 mm/month/year, respectively. The spatial variability of evaporation trend means that other effects of climate change could vary in different parts of the state. Results of this study will be useful for farmers and institutions in charge of the administration of water resources for developing adaptation and mitigation strategies to climate change.

References

  1. Abtew W, Obeysekera J, Iricanin N (2011) Pan evaporation and potential evapotranspiration trends in South Florida. Hydrol Process 25:958–969.  https://doi.org/10.1002/hyp.7887 CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, 1998. ISBN 92-5-104219-5Google Scholar
  3. Arthur TD, Allan RJ (2002) Trends in twentieth century temperature extremes across the United States. J Clim 15:3188–3205CrossRefGoogle Scholar
  4. Bayazit M, Önöz B (2007) To prewhiten or not to prewhiten in trend analysis? Hydrol Sci J 52:611–624.  https://doi.org/10.1623/hysj.52.4.611 CrossRefGoogle Scholar
  5. Blanco-Macías F, Valdez-Cepeda R, Magallanes-Quintana R (2011) Pan evaporation analysis in central Mexico: trends, self-affinity and important frequencies. Int J Phys Sci 6:540–549.  https://doi.org/10.5897/IJPS10.586 Google Scholar
  6. Breña-Naranjo JA, Laverde-Barajas MA, Pedrozo-Acuña A (2017) Changes in pan evaporation in Mexico from 1961 to 2010. Int J Climatol 37:204–213.  https://doi.org/10.1002/joc.4698 CrossRefGoogle Scholar
  7. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112.  https://doi.org/10.1029/2006JD008249
  8. Campos-Aranda DF (2006) Aplicación del cociente de sequedad en la República Mexicana. Rev Tlaloc Asoc Mex Hidráulica 36:13–23Google Scholar
  9. Ceballos-Barbancho A, Martínez-Fernández J, Luengo-Ugidos MA (2004) Analysis of rainfall trends and dry periods on a pluviometric gradient representative of Mediterranean climate in the Duero Basin, Spain. J Arid Environ 58:215–233.  https://doi.org/10.1016/j.jaridenv.2003.07.002 CrossRefGoogle Scholar
  10. Ceballos-Barbancho A, Morán-Tejeda E, Luengo-Ugidos MA, Llorente-Pinto JM (2008) Water resources and environmental change in a Mediterranean environment: the south-west sector of the Duero river basin (Spain). J Hydrol 351:126–138.  https://doi.org/10.1016/j.jhydrol.2007.12.004 CrossRefGoogle Scholar
  11. Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol 87:55–73.  https://doi.org/10.1016/S0168-1923(97)00006-3 CrossRefGoogle Scholar
  12. CNA-WMO (2006) Escenarios del agua 2015 y 2030 en el acuífero Interestatal Ojocaliente-Aguascalientes-Encarnación: acciones para un desarrollo con sostenibilidad ambiental. AguascalientesGoogle Scholar
  13. Cong ZT, Yang DW, Ni GH (2009) Does evaporation paradox exist in China? Hydrol Earth Syst Sci 13:357–366.  https://doi.org/10.5194/hess-13-357-2009 CrossRefGoogle Scholar
  14. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473.  https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2 CrossRefGoogle Scholar
  15. del Río S, Penas A, Fraile R (2005) Analysis of recent climatic variations in Castile and Leon (Spain). Atmos Res 73:69–85.  https://doi.org/10.1016/j.atmosres.2004.06.005 CrossRefGoogle Scholar
  16. Fan ZX, Thomas A (2013) Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004. Clim Chang 116:309–325.  https://doi.org/10.1007/s10584-012-0479-4 CrossRefGoogle Scholar
  17. García E (1973) Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). Universidad Autónoma de México, Mexico D.F. 246 ppGoogle Scholar
  18. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363.  https://doi.org/10.1016/j.jhydrol.2007.11.009 CrossRefGoogle Scholar
  19. Hobbins MT, Ramírez JA, Brown TC (2004) Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys Res Lett 31.  https://doi.org/10.1029/2004GL019846
  20. Instituto Nacional de Estadística Geografía e Informática (INEGI) (1995) Anuario estadístico del Estado de Aguascalientes. INEGI, MexicoGoogle Scholar
  21. IPCC (2007) Climate change 2007: climate change impacts, adaptation and vulnerability. Working Group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for policymakers. Geneva, 976 ppGoogle Scholar
  22. Jhajharia D, Singh VP (2011) Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int J Climatol 31:1353–1367.  https://doi.org/10.1002/joc.2164 CrossRefGoogle Scholar
  23. Kirono DGC, Jones RN, Cleugh HA (2009) Pan-evaporation measurements and Morton-point potential evaporation estimates in Australia: are their trends the same? Int J Climatol 29:711–718.  https://doi.org/10.1002/joc.1731 CrossRefGoogle Scholar
  24. Kothawale DR, Rupa Kumar K (2005) On the recent changes in surface temperature trends over India. Geophys Res Lett 32.  https://doi.org/10.1029/2005GL023528
  25. Lee K, Baek HJ, Cho CH (2013) Analysis of changes in extremes temperatures using quantile regression. J Atmos Sci 49:313–323.  https://doi.org/10.1007/s13143-013-0030-1 Google Scholar
  26. Lemus L, Gay C (1988) Temperature, precipitation variations and local effects Aguascalientes 1921-1985. Atmosfera 1:39–44Google Scholar
  27. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett:29.  https://doi.org/10.1029/2002GL014910
  28. Limjirakan S, Limsakul A (2012) Trends in Thailand pan evaporation from 1970 to 2007. Atmos Res 108:122–127.  https://doi.org/10.1016/j.atmosres.2012.01.010 CrossRefGoogle Scholar
  29. Liu B, Xu M, Henderson M, Gong W (2004) A spatial analysis of pan evaporation trends in China, 1955–2000. J Geophys Res 109:D15102.  https://doi.org/10.1029/2004JD004511 CrossRefGoogle Scholar
  30. Liu Q, Yang Z, Xia X (2010) Trends for pan evaporation during 1959-2000 in China. Procedia Environ Sci 2:1934–1941.  https://doi.org/10.1016/j.proenv.2010.10.206 CrossRefGoogle Scholar
  31. Liu X, Zheng H, Zhang M, Liu C (2011) Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J Geogr Sci 21:594–608.  https://doi.org/10.1007/s11442-011-0866-1 CrossRefGoogle Scholar
  32. Mandal S, Choudhury BU, Mondal M, Bej S (2013) Trend analysis of weather variables in Sagar Island, West Bengal, India: a long-term perspective (1982–2010). Curr Sci 105:947–953Google Scholar
  33. Moratiel R, Snyder RL, Durán JM, Tarquis AM (2011) Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Nat Hazards Earth Syst Sci 11:1795–1805.  https://doi.org/10.5194/nhess-11-1795-2011 CrossRefGoogle Scholar
  34. Ojeda-Bustamante W, Sifuentes-Ibarra E, Iñiguez-Covarrubias M, Montero-Martinez MJ (2011) Climate change impact on crop development and water requirements. Agrociencia 45:1–11Google Scholar
  35. Price C, Michaelides S, Pashiardis S, Alpert P (1999) Long term changes in diurnal temperature range in Cyprus. Atmos Res 51:85–98.  https://doi.org/10.1016/S0169-8095(99)00022-8 CrossRefGoogle Scholar
  36. Rebetez M, Beniston M (1998) Changes in sunshine duration are correlated with changes in daily temperature range this century: an analysis of Swiss climatological data. Geophys Res Lett 25:3611–3613.  https://doi.org/10.1029/98GL02810 CrossRefGoogle Scholar
  37. Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411.  https://doi.org/10.1126/science.1075390-a Google Scholar
  38. Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24:1077–1090.  https://doi.org/10.1002/joc.1061 CrossRefGoogle Scholar
  39. Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34.  https://doi.org/10.1029/2007GL031166
  40. Roy SS, Balling RC (2005) Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophys Res Lett 32.  https://doi.org/10.1029/2004GL022201
  41. Ruíz-Álvarez O, Espejel-Trujano D, Ontiveros-Capurata RE, Enciso J, Galindo-Reyes MA, Quesada-Parga ML, Grageda-Grageda J, Ramos-Reyes R, Ruíz-Corral JA (2016) Tendencia de temperaturas máximas y mínimas mensuales en Aguascalientes, México. Rev Mex Ciencias Agrícolas 13:2535–2549Google Scholar
  42. Ruiz-Corral JA, Medina-García G, Ramírez-Díaz JL, Flores-López HE, Ramírez-Ojeda G, de la Mora Orozco C, González-Eguiarte DR, Zarazúa-Villaseñor P, Manríquez-Olmos JD, Díaz-Padilla G (2011) Climate change and its implications in five producing areas of maize in Mexico. Rev Mex Ciencias Agrícolas 2:309–323Google Scholar
  43. Santillán-Espinoza LE, Blanco-Macías F, Magallanes-Quintanar R, García-Hernández JL, Cerano-Paredes J, Delgadillo-Ruiz O, Valdez-Cepeda RD (2011) Extreme temperature trends in Zacatecas, Mexico. Rev Mex Ciencias Agrícolas 2:207–219Google Scholar
  44. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1388.  https://doi.org/10.2307/2285891 CrossRefGoogle Scholar
  45. Supit I, van Diepen CA, Boogaard HL, Ludwig F, Baruth B (2010) Trend analysis of the water requirements, consumption and deficit of field crops in Europe. Agric For Meteorol 150:77–88.  https://doi.org/10.1016/j.agrformet.2009.09.002 CrossRefGoogle Scholar
  46. Tabari H, Marofi S (2011) Changes of Pan evaporation in the west of Iran. Water Resour Manag 25:97–111.  https://doi.org/10.1007/s11269-010-9689-6 CrossRefGoogle Scholar
  47. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, Part 3. Proc K Ned Akad Van Wet 53:1397–1412Google Scholar
  48. von Storch H (1995) Misuses of statistical analysis in climate research. In: von Storch H, Navarra A (ed) Analysis of climate variability. Springer, Berlin, Heidelberg, pp 11–26Google Scholar
  49. Xing JJ, Ji JW, Wan LG, Ye YZ, Feng XL (2012) Trends in annual and seasonal pan evaporation in the Lower Yellow River Basin from 1961 to 2010. Adv Clim Chang Res 3:195–204.  https://doi.org/10.3724/SP.J.1248.2012.00195 CrossRefGoogle Scholar
  50. Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Chang 53:355–392.  https://doi.org/10.1023/A:1014939413284 CrossRefGoogle Scholar
  51. Yue S, Wang CY (2002) Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int J Climatol 22:933–946.  https://doi.org/10.1002/joc.781 CrossRefGoogle Scholar
  52. Zarazúa-Villaseñor P, Ruiz-Corral JA, González-Eguiarte DR, Flores-López HE, Ron-Parra J (2011) Impacts of climate change on the maize agroclimatology in Ciénaga de Chapala Jalisco. Rev Mex Ciencias Agrícolas 2:351–363Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018
corrected publication June/2018

Authors and Affiliations

  • Osias Ruiz-Alvarez
    • 1
    • 2
    Email author
  • Vijay P. Singh
    • 3
  • Juan Enciso-Medina
    • 4
  • Clyde Munster
    • 3
  • Ronald Kaiser
    • 1
  • Ronald Ernesto Ontiveros-Capurata
    • 5
  • Luis Antonio Diaz-Garcia
    • 2
  • Carlos Antonio Costa dos Santos
    • 6
  1. 1.Water Management and Hydrological ScienceTexas A&M UniversityCollege StationUSA
  2. 2.Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP)Pabellón de ArteagaMexico
  3. 3.Department of Biological and Agricultural EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of Biological and Agricultural EngineeringTexas A&M AgriLife ResearchWeslacoUSA
  5. 5.CONACYT-Instituto Mexicano de Tecnología del Agua (IMTA)JiutepecMexico
  6. 6.Department of Atmospheric ScienceFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations