Advertisement

Theoretical and Applied Climatology

, Volume 135, Issue 3–4, pp 1531–1544 | Cite as

Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands

  • Juan Mauricio Bedoya-SotoEmail author
  • Germán Poveda
  • Kevin E. Trenberth
  • Jorge Julián Vélez-Upegui
Original Paper
  • 175 Downloads

Abstract

During 2009–2011, Colombia experienced extreme hydroclimatic events associated with the extreme phases of El Niño–Southern Oscillation (ENSO). Here, we study the dynamics of diverse land-atmosphere phenomena involved in such anomalous events at continental, regional, and local scales. Standardized anomalies of precipitation, 2-m temperature, total column water (TCW), volumetric soil water (VSW), temperature at 925 hPa, surface sensible heat (SSH), latent heat (SLH), evaporation (EVP), and liquid water equivalent thickness (LWET) are analyzed to assess atmosphere-land controls and relationships over tropical South America (TropSA) during 1986–2013 (long term) and 2009–2011 (ENSO extreme phases). An assessment of the interannual covariability between precipitation and 2-m temperature is performed using singular value decomposition (SVD) to identify the dominant spatiotemporal modes of hydroclimatic variability over the region’s largest river basins (Amazon, Orinoco, Tocantins, Magdalena-Cauca, and Essequibo). ENSO, its evolution in time, and strong and consistent spatial structures emerge as the dominant mode of variability. In situ anomalies during both extreme phases of ENSO 2009–2011 over the Magdalena-Cauca River basins are linked at the continental scale. The ENSO-driven hydroclimatic effects extend from the diurnal cycle to interannual timescales, as reflected in temperature data from tropical glaciers and the rain-snow boundary in the highest peaks of the Central Andes of Colombia to river levels along the Caribbean lowlands of the Magdalena-Cauca River basin.

Notes

Acknowledgements

M. Bedoya’s work was supported through “Vulnerability and Adaptation to Climate Extremes in the Americas (VACEA),” part of the International Research Initiative on Adaptation to Climate Change, International Development Research Centre (IDRC) of Canada. The work of G. Poveda and J. J. Vélez made part of the contribution of Universidad Nacional de Colombia to VACEA. We are grateful to IDEAM of Colombia for allowing access to hydrological data. Part of G. Poveda’s work was made possible through a visiting scientist fellowship from the National Center for Atmospheric Research (NCAR), in Boulder, CO, USA. NCAR is sponsored by the National Science Foundation. We are grateful to Yuhan Rao for his comments on the paper. We are also grateful for access to ERA-Interim, GPCC, and GRACE data processed by Sean Swenson with the gravity solutions from the CSR processing center supported by the NASA MEaSUREs Program.

References

  1. Aceituno P (1989) On the functioning of the southern oscillation in the South American sector. Part II. Upper-air circulation. J Clim 2(4):341–355CrossRefGoogle Scholar
  2. Albergel C et al (2013) Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J Hydrometeorol 14:1259–1277.  https://doi.org/10.1175/JHM-D-12-0161.1 CrossRefGoogle Scholar
  3. Arias PA, Martínez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn 45(9–10):2861–2884.  https://doi.org/10.1007/s00382-015-2511-7 CrossRefGoogle Scholar
  4. Avila LA, Stewart SR (2013) Atlantic hurricane season of 2011. Mon Wea Rev 141(8):2577–2596CrossRefGoogle Scholar
  5. Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim 15(7):745–763CrossRefGoogle Scholar
  6. Barreiro M, Diaz N (2011) Land-atmosphere coupling in El Niño influence over South America. Atm Sc Lett 12:351–355.  https://doi.org/10.1002/asl.348 CrossRefGoogle Scholar
  7. Bedoya M, Contreras C and Ruiz F (2010) Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático en Colombia. Estudio Nacional del Agua 2010, pp 282-320. IDEAM. ISBN: 978-958-8067-32-2Google Scholar
  8. Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3(6):630–645CrossRefGoogle Scholar
  9. Berg A et al (2015) Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J Clim 28:1308–1328CrossRefGoogle Scholar
  10. Bjornsson H, Venegas SA (1997) A manual for EOF and SVD analyses of climatic data. CCGCR Report 97(1)Google Scholar
  11. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602.  https://doi.org/10.1029/2012GL053055 Google Scholar
  12. Builes-Jaramillo A, Marwan N, Poveda G, Kurths J (2017) Nonlinear interactions between the Amazon River basin and the tropical North Atlantic at interannual timescales. Clim Dyn:1–19.  https://doi.org/10.1007/s00382-017-3785-8
  13. CEPAL, Comisión Económica para América Latina y el Caribe (2012) Valoración de daños y pérdidas. Ola invernal en Colombia. Bogotá, Mission BID-CEPAL, pp 2010–2011Google Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q JR Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  15. Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10:278–288.  https://doi.org/10.1175/2008JHM1016.1 CrossRefGoogle Scholar
  16. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T et al (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702.  https://doi.org/10.1029/2010GL046582 CrossRefGoogle Scholar
  17. Eltahir EA (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34:765–776.  https://doi.org/10.1029/97WR03499 CrossRefGoogle Scholar
  18. Galarneau TJ Jr, Hamill TM, Dole RM, Perlwitz J (2012) A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon Wea Rev 140(5):1639–1664CrossRefGoogle Scholar
  19. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609.  https://doi.org/10.1175/2008JCLI2429.1 CrossRefGoogle Scholar
  20. Grumm RH (2011) The central European and Russian heat event of July–August 2010. Bull Amer Meteorol Soc 92(10):1285–1296CrossRefGoogle Scholar
  21. Gutiérrez, F., and Dracup, J. A. (2001). An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino–Southern Oscillation indicators. J Hydrol 246(1):181–196Google Scholar
  22. Hastenrath S (1990) Climate dynamics of the tropics. Kluwer Academic PublishersGoogle Scholar
  23. Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010–2011 La Nina phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25.  https://doi.org/10.1016/j.apgeog.2012.11.018 CrossRefGoogle Scholar
  24. Houze RA Jr, Rasmussen KL, Medina S, Brodzik SR, Romatschke U (2011) Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull Amer Meteorol Socy 92(3):291–298CrossRefGoogle Scholar
  25. IDEAM (2013) Glaciares de Colombia. Más que montañas con hielo. Bogotá, 344 pGoogle Scholar
  26. IGAC-IDEAM-DANE (2011) Reporte final de áreas afectadas por inundaciones 2010–2011 con información de imágenes de satélite a Junio 6 de. IDEAM, Bogota, p 2011Google Scholar
  27. Kolstad EW, Barnes EA, Sobolowski SP (2017) Quantifying the role of land–atmosphere feedbacks in mediating near-surface temperature persistence. Quart J Roy Meteorol Socy 143(704):1620–1631CrossRefGoogle Scholar
  28. Koster RD, Suarez MJ (1999) A simple framework for examining the interannual variability of land surface moisture fluxes. J Clim 12:1911–1917CrossRefGoogle Scholar
  29. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531.  https://doi.org/10.1029/2011WR011453 CrossRefGoogle Scholar
  30. Lau WK, Kim KM (2012) The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13(1):392–403CrossRefGoogle Scholar
  31. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554.  https://doi.org/10.1126/science.1200807 CrossRefGoogle Scholar
  32. Mapes BE, Warner TT, Xu M (2003) Diurnal patterns of rainfall in northwestern South America. Part III: diurnal gravity waves and nocturnal convection offshore. Mon Wea Rev 131:830–844CrossRefGoogle Scholar
  33. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280CrossRefGoogle Scholar
  34. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38.  https://doi.org/10.1029/2011GL047436
  35. Mayer M, Trenberth KE, Haimberger L, Fasullo JT (2013) The response of tropical atmospheric energy budgets to ENSO. J Clim 26:4710–4724CrossRefGoogle Scholar
  36. Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the US CLIVAR drought experiments. J Clim 24:1801–1820CrossRefGoogle Scholar
  37. Negrón Juárez RI, Li W, Fu R, Fernandes K, de Oliveira Cardoso A (2009) Comparison of precipitation datasets over the tropical South American and African continents. J Hydrometeorol 10(1):289–299CrossRefGoogle Scholar
  38. Otto FEL, Massey N, vanOldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:L04702.  https://doi.org/10.1029/2011GL050422 CrossRefGoogle Scholar
  39. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large scale oceanic atmospheric phenomena. J Clim 10:2690–2702CrossRefGoogle Scholar
  40. Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla R (2001) Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Resour Res 37(8):2169–2178CrossRefGoogle Scholar
  41. Poveda G, Mesa OJ, Waylen PR (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation. In: Diaz H, Morehouse B (eds) Climate and water. Transboundary challenges in the Americas. Kluwer, Dordrecht, pp 351–371Google Scholar
  42. Poveda G (2004) The hydro-climatology of Colombia: a synthesis from inter-decadal to diurnal timescales. Rev Acad Colomb Cienc 28(107):201–222Google Scholar
  43. Poveda G et al (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133:228–240CrossRefGoogle Scholar
  44. Poveda G, Waylen PR, Pulwarty R (2006) Modern climate variability in northern South America and southern Mesoamerica. Palaeogeo Palaeoclim Palaeoecol 234:3–27CrossRefGoogle Scholar
  45. Poveda G, Pineda K (2009) Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Advan Geos 22:107–116CrossRefGoogle Scholar
  46. Poveda G, Alvarez DM, Rueda OA (2011) Hydroclimatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249CrossRefGoogle Scholar
  47. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:98–118.  https://doi.org/10.1002/2013WR014087 CrossRefGoogle Scholar
  48. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40CrossRefGoogle Scholar
  49. Seneviratne, S. I., & Stöckli, R. (2008). The role of land-atmosphere interactions for climate variability in Europe. In Climate variability and extremes during the past 100 years (pp. 179–193). Springer NetherlandsGoogle Scholar
  50. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161CrossRefGoogle Scholar
  51. Taylor CM, de Jeu RA, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489:423–426CrossRefGoogle Scholar
  52. Tootle GA, Piechota TC, Gutierrez F (2008) The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J Hydrol 349(3–4):268–276CrossRefGoogle Scholar
  53. Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381CrossRefGoogle Scholar
  54. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703.  https://doi.org/10.1029/2005GL022760 CrossRefGoogle Scholar
  55. Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115:283–290.  https://doi.org/10.1007/s10584-012-0441-5 CrossRefGoogle Scholar
  56. Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103.  https://doi.org/10.1029/2012JD018020 CrossRefGoogle Scholar
  57. van der Ent RJ, Savenije HH, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46.  https://doi.org/10.1029/2010WR009127
  58. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000CrossRefGoogle Scholar
  59. Wang H, Fu R (2004) Influence of cross-Andes flow on the South American low-level jet. J Clim 17(6):1247–1262CrossRefGoogle Scholar
  60. Webster PJ, Toma VE, Kim HM (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett 38(4).  https://doi.org/10.1029/2010GL046346
  61. Wohl E, Barros A, Brunsell N, Chappell N, Coe M, Giambelluca T, Goldsmith S, Harmon R, Hendrickx JMH, Juvik J, McDonnell J, Ogden F (2012) The hydrology of the humid tropics. Nat Clim Chang 2(9):655–662Google Scholar
  62. Yin L, Fu R, Zhang Y-F, Arias PA, Fernando DN, Li W, Fernandes K, Bowerman AR (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res Atmos 119:2314–2328.  https://doi.org/10.1002/2013JD021349 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Juan Mauricio Bedoya-Soto
    • 1
    Email author
  • Germán Poveda
    • 1
  • Kevin E. Trenberth
    • 2
  • Jorge Julián Vélez-Upegui
    • 3
  1. 1.Department of Geosciences and Environment, Facultad de MinasUniversidad Nacional de Colombia, Sede MedellínMedellínColombia
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Civil EngineeringUniversidad Nacional de Colombia, Sede ManizalesManizalesColombia

Personalised recommendations