Advertisement

Theoretical and Applied Climatology

, Volume 135, Issue 3–4, pp 1387–1397 | Cite as

Summarizing metocean operating conditions as a climatology of marine hazards

  • Heather Reid
  • Joel FinnisEmail author
Original Paper

Abstract

Marine occupations are plagued by some of the highest accident and mortality rates of any occupation, due in part to the variety and severity of environmental hazards presented by the ocean environment. In order to better study and communicate the potential impacts of these hazards on occupational health and safety, a semi-objective, hazard-focused climatology of a particularly dangerous marine environment (Northwestern Atlantic) has been developed. Specifically, climate has been summarized as the frequency with which responsible government agencies are expected to issue relevant warnings or watches, couching results in language relevant to marine stakeholders. Applying cluster analysis to warning/watch frequencies identified seven distinct ‘hazard climatologies’, ranging from near-Arctic conditions to areas dominated by calm seas and warm waters. Spatial and temporal variability in these clusters reflects relevant annual cycles, such as the advance/retreat of sea ice and shifts in the Atlantic storm track; the clusters also highlight regions and seasons with comparable operational risks. Our approach is proposed as an effective means to summarize and communicate marine risk with stakeholders, and a potential framework for describing climate change impacts.

References

  1. Ball GH, Hall DJ (1965) ISODATA: A novel method of data analysis and pattern classification. Stanford Research Institute, Menlo Park. (NTIS No. AD 699616)Google Scholar
  2. Beale E (1969) Euclidean cluster analysis. Scientific Control Systems LimitedGoogle Scholar
  3. Berrisford P, Dee DP, Poli P, Brugge R, Fielding K, Fuentes M, Allberg PWK, Kobayashi S, Uppala S, Simmons A (2011) The ERA-Interim Archive Version 2.0. Shinfield Park, Reading, ECMWFGoogle Scholar
  4. Bieniek PA, Bhatt US, Thoman RL, Angeloff H, Partain J, Papineau J, Fritsch F, Holloway E, Walsh JE, Daly C, Shulski M, Hufford G, Hill DF, Calos S, Gens R (2012) Climate divisions for Alaska based on objective methods. J Appl Meteorol Climatol 51:1276–1289.  https://doi.org/10.1175/JAMC-D-11-0168.1 CrossRefGoogle Scholar
  5. Binkley M (1995) Risks, dangers, and rewards in the Nova Scotia Offshore Fishery. McGill-Queen's Press-MQUPGoogle Scholar
  6. Bowditch N (2002) The American practical navigator: an epitome of navigation. The National Imagery and Mapping Agency, NIMA Ref. No NVPUB9V1Google Scholar
  7. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27.  https://doi.org/10.1080/03610927408827101 Google Scholar
  8. Canadian Coast Guard, Fisheries and Oceans Canada (2012) Ice navigation in Canadian waters. Fs154-31/2012E-PDFGoogle Scholar
  9. Crowley JD (1988) Cold water effects upon marine operations. OCEANS '88 A Partnership of Marine Interests Proceedings:543–548.  https://doi.org/10.1109/OCEANS.1988.794867
  10. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1:224–227.  https://doi.org/10.1109/TPAMI.1979.4766909 CrossRefGoogle Scholar
  11. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New YorkGoogle Scholar
  12. Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4:95–104.  https://doi.org/10.1080/01969727408546059 CrossRefGoogle Scholar
  13. Environment & Climate Change Canada (2016) Public Alerting Criteria. http://www.ec.gc.ca/meteo-weather/default.asp?n=D9553AB5-1. Accessed 11/05/2016
  14. Fequet D, Meteorological Service of Canada (2002) MANICE: manual of standard procedures for observing and reporting ice conditions. Downsview, Ont., Downsview, Ont: Environment CanadaGoogle Scholar
  15. Fovell RG, Fovell MC (1993) Climate zones of the conterminous United States defined using cluster analysis. J Clim 6:2103–2135.  https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2 CrossRefGoogle Scholar
  16. Frey T, van Groenewoud H (1972) A cluster analysis of the D2 matrix of white spruce stands in Saskatchewan based on the maximum-minimum principle. J Ecol 60:873–886.  https://doi.org/10.2307/2258571 CrossRefGoogle Scholar
  17. Giesbrecht GG, Hayward JS (2006) Problems and complications with cold-water rescue. Wilderness Environ Med 17:26–30.  https://doi.org/10.1580/PR01-05.1 CrossRefGoogle Scholar
  18. Guest P, Luke R (2005) Vessel icing. NOAA Mariner’s Weather Log 49Google Scholar
  19. Halkidi M, Vazirgiannis M (2001) Clustering validity assessment: finding the optimal partitioning of a data set. Proceedings 2001 I.E. International Conference on Data Mining:187–194.  https://doi.org/10.1109/ICDM.2001.989517
  20. Halkidi M, Vazirgiannis M, Batistakis Y (2000) Quality scheme assessment in the clustering process. In: Zighed DA, Komorowski J, Zytkow J. Principles of data mining and knowledge discovery: 4th European Conference, PKDD 2000 Lyon, France, September 13–16, 2000 Proceedings. Berlin, Heidelberg, Springer Berlin Heidelberg, pp 265–276Google Scholar
  21. Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc: Ser C: Appl Stat 28:100–108.  https://doi.org/10.2307/2346830 Google Scholar
  22. Hasselback P, Neutel CI (1990) Risk for commercial fishing deaths in Canadian Atlantic provinces. Br J Ind Med 47:498–501.  https://doi.org/10.1136/oem.47.7.498 Google Scholar
  23. Hubert LJ, Levin JR (1976) A general statistical framework for assessing categorical clustering in free recall. Psychol Bull 83:1072–1080.  https://doi.org/10.1037/0033-2909.83.6.1072 CrossRefGoogle Scholar
  24. Jensen OC (1997) Health hazards while fishing in heavy weather. Occup Environ Med 54:141–141CrossRefGoogle Scholar
  25. Jin D, Thunberg E (2005) An analysis of fishing vessel accidents in fishing areas off the northeastern United States. Saf Sci 43:523–540.  https://doi.org/10.1016/j.ssci.2005.02.005 CrossRefGoogle Scholar
  26. Jin D, Kite-Powell H, Talley W (2001) The safety of commercial fishing: determinants of vessel total losses and injuries. J Saf Res 32:209–228.  https://doi.org/10.1016/S0022-4375(01)00047-0 CrossRefGoogle Scholar
  27. Jin D, Kite-Powell HL, Thunberg E, Solow AR, Talley WK (2002) A model of fishing vessel accident probability. J Saf Res 33:497–510.  https://doi.org/10.1016/S0022-4375(02)00050-6 CrossRefGoogle Scholar
  28. Köppen W (1884) Die wärmezonen der erde, nach der dauer der heissen, gemässigten und kalten zeit und nach der wirkung der wärme auf die organische welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impact of heat on the organic world). Meteorol Z 1:215–226Google Scholar
  29. Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44:23–34.  https://doi.org/10.2307/2531893 CrossRefGoogle Scholar
  30. Laursen LH, Hansen HL, Jensen OC (2008) Fatal occupational accidents in Danish fishing vessels 1989–2005. Int J Inj Control Saf Promot 15:109–117.  https://doi.org/10.1080/17457300802240503 CrossRefGoogle Scholar
  31. Lincoln JM, Conway GA (1999) Preventing commercial fishing deaths in Alaska. Occup Environ Med 56:691–695.  https://doi.org/10.1136/oem.56.10.691 CrossRefGoogle Scholar
  32. MacLaren Plansearch (firm), Canada Ministry of Transportation (1991) Wind and wave climate atlas: prepared by MacLaren Plansearch Limited. Halifax, N.S., Halifax, N.S. : MacLaren PlansearchGoogle Scholar
  33. McClain JO, Rao VR (1975) CLUSTISZ: a program to test for the quality of clustering of a set of objects. J Mark Res 12:456–460Google Scholar
  34. Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50:159–179.  https://doi.org/10.1007/BF02294245 CrossRefGoogle Scholar
  35. Moore GWK (2013) A climatology of vessel icing for the subpolar North Atlantic Ocean. Int J Climatol 33:2495–2507.  https://doi.org/10.1002/joc.3604 CrossRefGoogle Scholar
  36. National Research Council (U.S.) Marine Board Committee on Fishing Vessel Safety (1991) Fishing vessel safety: blueprint for a national program. National Academy Press, Washington D.C.Google Scholar
  37. National Weather Service (2015) Marine forecasts FAQ. http://www.nws.noaa.gov/os/marine/faq.htm. Accessed 12/062016
  38. Newfoundland Labrador Dept. of Natural Resources (2016) Offshore projects. http://www.nr.gov.nl.ca/nr/energy/petroleum/offshore/offprojects.html. Accessed 01/28/2017
  39. O’Connor PJ, O’Connor N (2006) Work-related maritime fatalities. Accid Anal Prev 38:737–741.  https://doi.org/10.1016/j.aap.2006.01.004 CrossRefGoogle Scholar
  40. Overland JE (1990) Prediction of vessel icing for near-freezing sea temperatures. Wea Forecasting 5:62–77.  https://doi.org/10.1175/1520-0434(1990)005<0062:POVIFN>2.0.CO;2
  41. Overland JE, Pease CH, Preisendorfer RW, Comiskey AL (1986) Prediction of vessel icing. J Clim Appl Meteorol 25:1793–1806.  https://doi.org/10.1175/1520-0450(1986)025<1793:POVI>2.0.CO;2 CrossRefGoogle Scholar
  42. Poggie J, Pollnac R, Jones S (1995) Perceptions of vessel safety regulations: a southern New England fishery. Mar Policy 19:411–418.  https://doi.org/10.1016/0308-597X(95)00015-X CrossRefGoogle Scholar
  43. Ratkowsky DA, Lance GN (1978) A criterion for determining the number of groups in a classication. Aust. Comput. J 10(3):115–117Google Scholar
  44. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496.  https://doi.org/10.1175/2007JCLI1824.1 CrossRefGoogle Scholar
  45. Roberts SE (2004) Occupational mortality in British commercial fishing, 1976–95. Occup Environ Med 61:16–23Google Scholar
  46. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65.  https://doi.org/10.1016/0377-0427(87)90125-7 CrossRefGoogle Scholar
  47. Schnitzer PG, Landen DD, Russell JC (1993) Occupational injury deaths in Alaska’s fishing industry, 1980 through 1988. Am J Public Health 83:685–688.  https://doi.org/10.2105/AJPH.83.5.685 CrossRefGoogle Scholar
  48. Slonim N, Aharoni E, Crammer K (2013) Hartigan’s k-means versus Lloyd’s k-means: is it time for a change? Proceedings of the twenty-third international joint conference on artificial intelligence: 1677-1684Google Scholar
  49. Tag PM, Peak JE (1996) Machine learning of maritime fog forecast rules. J Appl Meteorol 35:714–724.  https://doi.org/10.1175/1520-0450(1996)035<0714:MLOMFF>2.0.CO;2 CrossRefGoogle Scholar
  50. Talley WK (1999) The safety of sea transport: determinants of crew injuries. Appl Econ 31:1365–1372.  https://doi.org/10.1080/000368499323247 CrossRefGoogle Scholar
  51. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B (Stat Methodol) 63:411–423.  https://doi.org/10.1111/1467-9868.00293 CrossRefGoogle Scholar
  52. Toffoli A, Lefèvre JM, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res 27:281–291.  https://doi.org/10.1016/j.apor.2006.03.003 CrossRefGoogle Scholar
  53. Transport Canada (2003) Small fishing vessel: safety manual. TP 10038 EGoogle Scholar
  54. Transportation Safety Board of Canada (2012) Safety issues investigation into fishing safety in Canada. Transportation Safety Board of Canada, Gatineau QC CanadaGoogle Scholar
  55. Transportation Safety Board of Canada (2014) TSB statistical summary: marine occurrences 2013. Cat. No. TU1-1/2009EGoogle Scholar
  56. Turk EE (2010) Hypothermia. Forensic Sci Med Pathol 6:106–115.  https://doi.org/10.1007/s12024-010-9142-4 CrossRefGoogle Scholar
  57. Unal Y, Kindap T, Karaca M (2003) Redefining the climate zones of Turkey using cluster analysis. Int J Climatol 23:1045–1055.  https://doi.org/10.1002/joc.910 CrossRefGoogle Scholar
  58. Vajda A, Tuomenvirta H, Juga I, Nurmi P, Jokinen P, Rauhala J (2014) Severe weather affecting European transport systems: the identification, classification and frequencies of events. Nat Hazards 72:169–188.  https://doi.org/10.1007/s11069-013-0895-4 CrossRefGoogle Scholar
  59. Van Noy M (1995) Toward a systematic approach to safety in the commercial fishing industry. J Saf Res 26:19–29.  https://doi.org/10.1016/0022-4375(94)00027-1 CrossRefGoogle Scholar
  60. Wang J, Pillay A, Kwon YS, Wall AD, Loughran CG (2005) An analysis of fishing vessel accidents. Accid Anal Prev 37:1019–1024.  https://doi.org/10.1016/j.aap.2005.05.005 CrossRefGoogle Scholar
  61. Windle MJS, Neis B, Bornstein S, Binkley M, Navarro P (2008) Fishing occupational health and safety: a comparison of regulatory regimes and safety outcomes in six countries. Mar Policy 32:701–710.  https://doi.org/10.1016/j.marpol.2007.12.003 CrossRefGoogle Scholar
  62. Wissler EH (2003) Probability of survival during accidental immersion in cold water. Aviat Space Environ Med 74:47–55Google Scholar
  63. Wu Y, Pelot R, Hilliard C (2005) The effect of weather factors on the severity of fishing boat accidents in Atlantic Canada. Risk Manag 7:21–40.  https://doi.org/10.1057/palgrave.rm.8240217 CrossRefGoogle Scholar
  64. Wu Y, Pelot RP, Hilliard C (2009) The influence of weather conditions on the relative incident rate of fishing vessels. Risk Anal 29:985–999.  https://doi.org/10.1111/j.1539-6924.2009.01217.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyUniversity of GuelphGuelphCanada
  2. 2.Department of GeographyMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations