Advertisement

Human-induced climate change: the impact of land-use change

  • Thomas Gries
  • Margarete Redlin
  • Juliette Espinosa Ugarte
Original Paper

Abstract

For hundreds of years, human activity has modified the planet’s surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth’s surface albedo, both of which in turn change the Earth’s radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.

Notes

Acknowledgments

We would like to thank the editor and an anonymous reviewer for good comments that improved the quality of this paper.

Supplementary material

704_2018_2422_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)
704_2018_2422_MOESM2_ESM.dta (29 kb)
ESM 2 (DTA 29 kb)
704_2018_2422_MOESM3_ESM.do (7 kb)
ESM 3 (DO 6 kb)
704_2018_2422_MOESM4_ESM.do (2 kb)
ESM 4 (DO 2 kb)
704_2018_2422_MOESM5_ESM.do (2 kb)
ESM 5 (DO 2 kb)
704_2018_2422_MOESM6_ESM.do (1 kb)
ESM 6 (DO 1 kb)

References

  1. Alexander C (1999) Optimal hedging using cointegration. Philos Trans R Soc, Lond, A 357:2039–2058CrossRefGoogle Scholar
  2. Attanasio A (2012) Testing for linear Granger causality from natural/anthropogenic forcings to global temperature anomalies. Theor Appl Climatol 110:281–289CrossRefGoogle Scholar
  3. Attanasio A, Triacca U (2011) Detecting human influence on climate using neural networks based Granger causality. Theor Appl Climatol 103:103–107CrossRefGoogle Scholar
  4. Attanasio A, Antonello P, Triacca U (2012) A contribution to attribution of recent global warming by out-of-sample Granger causality analysis. Atmos Sci Lett 13:67–72CrossRefGoogle Scholar
  5. Attanasio A, Pasini A, Triacca U (2013) Granger causality analyses for climatic attribution. Atmos Climate Sci 3:515–522Google Scholar
  6. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-sale deforestation. Proc Natl Acad Sci 104:6550–6555CrossRefGoogle Scholar
  7. Barnes CA, Roy DP, Loveland TR (2013) Projected surface radiative forcing due to 2000–2050 land-cover land-use albedo changes over the eastern United States. J Land Use Sci 8:369–382CrossRefGoogle Scholar
  8. Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–189CrossRefGoogle Scholar
  9. Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature changes and radiative forcing. Atmos Sci Lett 1:1530–1543Google Scholar
  10. Betts RA, Falloon PD, Klein Goldewijk K, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233CrossRefGoogle Scholar
  11. Bilancia M, Vitale D (2012) Anthropogenic CO2 emissions and global warming: evidence from Granger causality analysis. Adv Stat Methods Anal Large Data-Sets Stud Theoretical and Appl Stat:229–239Google Scholar
  12. Bonan GB (1997) Effects of land use on the climate of the United States. Climate Change 37:449–486CrossRefGoogle Scholar
  13. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449CrossRefGoogle Scholar
  14. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forests vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  15. Bounoua L, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Climate Change 52:29–64CrossRefGoogle Scholar
  16. Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517CrossRefGoogle Scholar
  17. Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claussen M, Friedlingstein P, Gayler V, Van den Hurk BJJM, Hurtt GC, Jones CD, Kato E, De Noblet-Ducoudré N, Pacifico F, Pongratz J, Weiss M (2013) Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J Clim 26:6859–6881CrossRefGoogle Scholar
  18. Chase TN, Pielke RA, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16:93–105CrossRefGoogle Scholar
  19. Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks or large-scale land cover change. Geophys Res Lett 28:1011–1014CrossRefGoogle Scholar
  20. Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34CrossRefGoogle Scholar
  21. Davin EL, De Noblet-Ducoudré N, Friedlingstein P (2007) Impact of land cover change on surface climate: relevance of the radiative forcing concept. Geophys Res Lett 34:1–5CrossRefGoogle Scholar
  22. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74:427–431Google Scholar
  23. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40(12):3031–3035CrossRefGoogle Scholar
  24. Engle RF, Granger CWJ (1987) Co-integration and error correction: representation, estimation and testing. Econometrica 55:251–276CrossRefGoogle Scholar
  25. Findell KL, Shevliakova E, Milly PCD, Stouffer RJ (2007) Modeled impact of anthropogenic land cover change on climate. J Clim 20:3621–3634CrossRefGoogle Scholar
  26. Gedney N, Valdes PJ (2000) The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys Res Lett 27:3053–3056CrossRefGoogle Scholar
  27. Ghommem M, Hajj MR, Puri IK (2012) Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecol Model 235-236:1–7CrossRefGoogle Scholar
  28. Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Climate effects of global land cover change. Geophys Res Lett 32:1–4CrossRefGoogle Scholar
  29. Global Carbon Project (2017) Global carbon budget 2017. Earth System Science Data Discussions.  https://doi.org/10.5194/essd-2017-123. pp. 1–79, by Le Quéré C, Andrew RM, Friedlingstein P, et al.
  30. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRefGoogle Scholar
  31. Hansen JE, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:997–1022Google Scholar
  32. Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51(2):298–313CrossRefGoogle Scholar
  33. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55:378–390Google Scholar
  34. Houghton RA, Hackler JL (1995) Continental scale estimates of the biotic carbon flux from land cover change: 1850-1980. ORNL/CDIAC-79, NDP-050, carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TennesseeGoogle Scholar
  35. Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31(3):456–472CrossRefGoogle Scholar
  36. Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262CrossRefGoogle Scholar
  37. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142CrossRefGoogle Scholar
  38. IPCC (2000) Land use, land-use change, and forestry—summary for policymakers. IPCC special reports, [Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. (eds.)], Cambridge University Press, UK 6-22Google Scholar
  39. IPCC (2007) Synthesis Report. Climate Change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland 30–41Google Scholar
  40. IPCC (2013) Summary for policymakers. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex, V and Midgley PM (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 11-26Google Scholar
  41. Johansen S (1988) Statistical analysis of cointegration vectors. J Econ Dyn Control 12:231–254CrossRefGoogle Scholar
  42. Jones PD, Raper SCB, Cherry BSG, Goodess CM, Wigley TML (1986) Grid point surface air temperature data set for the southern hemisphere. U.S. Department of Energy, Carbon Dioxide Research Division, technical report TR027:73Google Scholar
  43. Kang J, Larsson R (2014) What is the link between temperature and carbon dioxide levels? A Granger causality analysis based on ice core data. Theor Appl Climatol 116:537–548CrossRefGoogle Scholar
  44. Kaufmann RK, Stern DI (1997) Evidence for human influence on climate from hemispheric temperature relations. Nature 338:39–44CrossRefGoogle Scholar
  45. Kaufmann RK, Stern DI (2002) Cointegration analysis of hemispheric temperature relations. J Geophys Res 107:1–10Google Scholar
  46. Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, Collatz GJ (2016) Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun 7.  https://doi.org/10.1038/ncomms13428
  47. Kirschbaum MUF, Saggar S, Tate KR, Thakur KP, Giltrap DL (2013) Quantifying the climate-change consequences of shifting land use between forest and agriculture. Sci Total Environ:1–11Google Scholar
  48. Kodra E, Chatterjee S, Ganguly AR (2011) Exploring Granger causality between global average observed time series of carbon dioxide and temperature. Theor Appl Climatol 104:325–335CrossRefGoogle Scholar
  49. Kuo C, Lindberg C, Thomson DJ (1990) Coherence established between atmospheric carbon dioxide and global temperature. Nature 343:709–714CrossRefGoogle Scholar
  50. Lenton TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus 52(5):1159–1188CrossRefGoogle Scholar
  51. Liew VK-S (2004) Which lag length selection criteria should we employ? Econ Bull 3:1–9Google Scholar
  52. Liu H, Rodriguez G (2005) Human activities and global warming: a co-integration analysis. Environ Model Softw 20:761–773CrossRefGoogle Scholar
  53. Lütkepohl H, Krätzig M (2004) Applied time series econometrics. Cambridge University Press, Cambridge 148:11–64Google Scholar
  54. Mann EM, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  55. Myhre G, Myhre A (2003) Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J Clim 16:1511–1524CrossRefGoogle Scholar
  56. NOAA–National Oceanic and Atmospheric Administration (2017) Global surface temperature anomalies. National Climatic Data Center, accessed 22 Dec 2017 <https://www.ncdc.noaa.gov/monitoring-references/faq/anomalies.php>
  57. Pasini A, Lorè M, Ameli F (2006) Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecol Model 191:58–67CrossRefGoogle Scholar
  58. Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346CrossRefGoogle Scholar
  59. Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DDS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond 360:1705–1719CrossRefGoogle Scholar
  60. Pitman A, Pielke R, Avissar R, Claussen M, Gash J, Dolman H (2001) The role of the land surface in weather and climate: does the land surface matter? Glob Change Newsl 39:4–11Google Scholar
  61. Polcher J, Laval K (1994) A statistical study of the regional impact of deforestation on climate in the LMD GCM. Clim Dyn 10:205–219CrossRefGoogle Scholar
  62. Pongratz J, Caldeira K (2012) Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change. Environ Res Lett 7:1–8CrossRefGoogle Scholar
  63. Schönwiese CD (1994) Analysis and predictions of global climate temperature change based on multiforced observational statistics. Environ Pollut 83:149–154CrossRefGoogle Scholar
  64. Schwaiger HP, Bird DN (2010) Integration of albedo effects caused by land use change into the climate balance: should we still account in greenhouse gas units? For Ecol Manag 260:278–286CrossRefGoogle Scholar
  65. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles 19:1–15CrossRefGoogle Scholar
  66. Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlström A, Doney SC, Graven H, Heinze C, Huntingford C, Levis S, Levy PE, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Vanadell JG, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao SL, Le Quéré C, Smith B, Zhu Z, Myneni R (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12(3):653–679CrossRefGoogle Scholar
  67. Smirnov DA, Mokhov IL (2009) From Granger causality to long-term causality: application to climate data. Phys Rev E 80:1–17Google Scholar
  68. Smith RL, Wigley TML, Santer BD (2003) A bivariate time series approach to anthropogenic trend detection in hemispheric time series. J Clim 16:1228–1240CrossRefGoogle Scholar
  69. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  70. Snyder PK, Foley JA, Hitchman MH, Delire C (2004) Analyzing the effects of complete tropical forest removal of the regional climate using a detailed three-dimensional energy budget: an application to Africa. J Geophys Res 109:1–19CrossRefGoogle Scholar
  71. Stern DI, Kaufmann RK (1997) Time series properties of global climate variables: detection and attribution of climate change. Working Papers in Ecological Economics, Center for Energy and Environmental Studies, Boston University, Boston 9702:1–37Google Scholar
  72. Stern DI, Kaufmann RK (1999) Econometric analysis of global climate change. Environ Model Softw 14:597–605CrossRefGoogle Scholar
  73. Sun L, Wang M (1996) Global warming and global dioxide emission: an empirical study. J Environ Manag 46:327–343CrossRefGoogle Scholar
  74. Thomson DJ (1997) Dependence of global temperatures on atmospheric CO2 and solar irradiance. Proc Natl Acad Sci 94:8370–8377CrossRefGoogle Scholar
  75. Toda HY, Yamamoto T (1995) Statistical inference in vector autoregressions with possibly integrated processes. J Econ 66:225–250CrossRefGoogle Scholar
  76. Tol RSJ (1994) Greenhouse statistics—time series analysis: part II. Theor Appl Climatol 49:91–102CrossRefGoogle Scholar
  77. Tol RSJ, de Vos AF (1993) Greenhouse statistics—time series analysis. Theor Appl Climatol 48:63–74CrossRefGoogle Scholar
  78. Tol RSJ, de Vos AF (1998) A Bayesian statistical analysis of the enhanced greenhouse effect. Climate Change 38:87–112CrossRefGoogle Scholar
  79. Triacca U (2005) Is Granger causality analysis appropriate to investigate the relationship between atmospheric concentration of carbon dioxide and global surface air temperature? Theor Appl Climatol 81:133–135CrossRefGoogle Scholar
  80. Triacca U, Attanasio A, Pasini A (2013) Anthropogenic global warming hypothesis: testing its robustness by Granger causality analysis. Environmetrics 24:260–268CrossRefGoogle Scholar
  81. Voldoire A, Royer JF (2004) Tropical deforestation and climate variability. Clim Dyn 22:857–874CrossRefGoogle Scholar
  82. van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738CrossRefGoogle Scholar
  83. Werth D, Avissar R (2004) The local and global effects of African deforestation. Geophys Res Lett 32:1–4Google Scholar
  84. Zhao M, Pitman AJ, Chase T (2001) The impact of land cover change on the atmospheric circulation. Clim Dyn 17:467–477CrossRefGoogle Scholar
  85. Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Vheng L, Kato E, Koven C, Li Y, Lian X, Liu Y, Liu R, Mao J, Pan Y, Peng S, Peñuelas J, Poulter B, Pugh TAM, Stocker BD, Viovy N, Wang X, Wang Y, Xiao Z, Yang H, Zaehle S, Zeng N (2016) Greening of the Earth and its drivers. Nat Clim Chang 6(8):791–795CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Gries
    • 1
  • Margarete Redlin
    • 1
  • Juliette Espinosa Ugarte
    • 1
  1. 1.University of PaderbornPaderbornGermany

Personalised recommendations