Advertisement

Theoretical and Applied Climatology

, Volume 135, Issue 3–4, pp 1123–1142 | Cite as

Evaluation of performance of seasonal precipitation prediction at regional scale over India

  • U. C. MohantyEmail author
  • M. M. Nageswararao
  • P. Sinha
  • A. Nair
  • A. Singh
  • R. K. Rai
  • S. C. Kar
  • K. J. Ramesh
  • K. K. Singh
  • K. Ghosh
  • L. S. Rathore
  • R. Sharma
  • A. Kumar
  • B. S. Dhekale
  • R. K. S. Maurya
  • R. K. Sahoo
  • G. P. Dash
Original Paper

Abstract

The seasonal scale precipitation amount is an important ingredient in planning most of the agricultural practices (such as a type of crops, and showing and harvesting schedules). India being an agroeconomic country, the seasonal scale prediction of precipitation is directly linked to the socioeconomic growth of the nation. At present, seasonal precipitation prediction at regional scale is a challenging task for the scientific community. In the present study, an attempt is made to develop multi-model dynamical-statistical approach for seasonal precipitation prediction at the regional scale (meteorological subdivisions) over India for four prominent seasons which are winter (from December to February; DJF), pre-monsoon (from March to May; MAM), summer monsoon (from June to September; JJAS), and post-monsoon (from October to December; OND). The present prediction approach is referred as extended range forecast system (ERFS). For this purpose, precipitation predictions from ten general circulation models (GCMs) are used along with the India Meteorological Department (IMD) rainfall analysis data from 1982 to 2008 for evaluation of the performance of the GCMs, bias correction of the model results, and development of the ERFS. An extensive evaluation of the performance of the ERFS is carried out with dependent data (1982–2008) as well as independent predictions for the period 2009–2014. In general, the skill of the ERFS is reasonably better and consistent for all the seasons and different regions over India as compared to the GCMs and their simple mean. The GCM products failed to explain the extreme precipitation years, whereas the bias-corrected GCM mean and the ERFS improved the prediction and well represented the extremes in the hindcast period. The peak intensity, as well as regions of maximum precipitation, is better represented by the ERFS than the individual GCMs. The study highlights the improvement of forecast skill of the ERFS over 34 meteorological subdivisions as well as India as a whole during all the four seasons.

Notes

Acknowledgements

This research has been sponsored by the Department of Agriculture, Cooperation & Farmers Welfare (DAC & FW), Minstry of Agriculture & Farmers Welfare, Government of India, and duly acknowledged. The authors gratefully acknowledge the India Meteorological Department for providing the gridded precipitation dataset. We also thank the International Research Institute for climate and Society (IRI), Columbia University and National Centres for Environmental Prediction (NCEP) for providing GCMs output in hindcast and real-time mode. Dr. N. Acharya, Dr. K. Prasad, Dr. M. A. Kulkarni, Prof. S. K Dash, Dr. D. R. Pattnaik and Mr. Itesh Dash are acknowledged for providing their expertise in various stages of this study. We are very much thankful to the anonymous reviewers for providing valuable suggestions and comments which are helpful in the improvement of the quality of the manuscript.

References

  1. Acharya N, Kar SC, Kulkarni MA, Mohanty UC, Sahoo LN (2011) Multi-model ensemble schemes for predicting northeast monsoon rainfall over peninsular India. J Earth Syst Sci 120(5):795–805CrossRefGoogle Scholar
  2. Acharya N, Chattopadhyay S, Mohanty UC, Dash SK, Sahoo LN (2012) On the bias correction of general circulation model output for Indian summer monsoon. Meteorol Appl 20:349–356.  https://doi.org/10.1002/met.1294 CrossRefGoogle Scholar
  3. Acharya N, Singh A, Mohanty UC, Nair A, Chattopadhyay S (2013) Performance of general circulation models and their ensembles for the prediction of drought indices over India during summer monsoon. Nat Hazards 66(2):851–871.  https://doi.org/10.1007/s11069-012-0531-8 CrossRefGoogle Scholar
  4. Barnston AG, Smith TM (1996) Specification and prediction of global surface temperature and precipitation from global SST using CCA. J Clim 9:2660–2697CrossRefGoogle Scholar
  5. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143CrossRefGoogle Scholar
  6. Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109.  https://doi.org/10.1029/2008JD010572 CrossRefGoogle Scholar
  7. Dhekale BS, Nageswararao MM, Nair A, Mohanty UC, Swain DK, Singh KK, Arunbabu T (2017) Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts. Theor Appl Climatol.  https://doi.org/10.1007/s00704-017-2232-4
  8. Dimri AP, Niyogi D, Barros AP, Ridley J, Mohanty UC, Yasunari T, Sikka DR (2015) Western disturbances: a review. Rev Geophys.  https://doi.org/10.1002/2014RG000460
  9. Doblas-Reyes FJ, Deque M, Piedelievre JP (2000) Multi-model spread and probabilistic seasonal forecasts in PROVOST. Q J R Meteorol Soc 126:2069–2088.  https://doi.org/10.1002/qj.49712656705 CrossRefGoogle Scholar
  10. Fekedulegn BD, Colbert JJ, Hicks RR, Schuckers M (2002) Coping with multicollinearity: an example on application of principal components regression in dendroecology. Newton Square, PA, Department of Agriculture, Forest Service, Northeastern Research StationCrossRefGoogle Scholar
  11. Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim Dyn 14(9):659–689CrossRefGoogle Scholar
  12. Ghosh K, Ankita S, Mohanty UC, Nachiketa A, Pal RK, Singh KK, Pasupalak S (2014) Development of a rice yield prediction system over Bhubaneswar, India: combination of extended range forecast and CERES-rice model. Meteorol Appl.  https://doi.org/10.1002/met.1483
  13. Goddard L, Barnston AG, Mason SJ (2003) Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull Am Meteorol Soc 84(12):1761–1781.  https://doi.org/10.1175/BAMS-84-12-1761 CrossRefGoogle Scholar
  14. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445.  https://doi.org/10.1126/science.1132027 CrossRefGoogle Scholar
  15. Gowariker VV, Thapliyal RP, Sarker GS, Mandal SDR (1989) Parametric and power regression models: new approach to long range forecasting of monsoon rainfall in India. Mausam 40:115–122Google Scholar
  16. Graham NE, Michaelsen J, Barnett TP (1987) An investigation of the El Nino–Southern Oscillation cycle with statistical models. Part 1. Predictor field characteristics. J Geophys Res 92:14,251–14,270CrossRefGoogle Scholar
  17. Hurrell JW, Hack JJ, Boville BA, Williamson DL, Kiehl JT (1998) The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3). J Clim 11:1207–1236.  https://doi.org/10.1175/1520-0442(1998)011<1207:TDSOTN>2.0.CO;2 CrossRefGoogle Scholar
  18. Kar SC, Rana S (2014) Interannual variability of winter precipitation over northwest India and adjoining region: impact of global forcings. Theor Appl Climatol 116(3-4):609–623.  https://doi.org/10.1007/s00704-013-0968-z CrossRefGoogle Scholar
  19. Kar SC, Hovsepyan A, Park CK (2006) Economic values of the APCN multi-model ensemble categorical seasonal predictions. Meteorol Appl 13(3):267–277.  https://doi.org/10.1017/S1350482706002271 CrossRefGoogle Scholar
  20. Kar SC, Acharya N, Mohanty UC, Kulkarni MA (2011) Skill of monthly rainfall forecasts over India using multi-model ensemble schemes. Int J Climatol 32:1271–1286.  https://doi.org/10.1002/joc.2334 CrossRefGoogle Scholar
  21. Kekane MA (2013) Indian agriculture—status, importance and role in Indian economy. Int J Agric Food Sci Technol 4(4):343–346Google Scholar
  22. Kharin VV, Zwiers FW (2003) Improved seasonal probability forecasts. J Clim 16:1684–1701.  https://doi.org/10.1175/1520-0442(2003)016<1684:ISPF>2.0.CO;2 CrossRefGoogle Scholar
  23. Kiran Prasad S, Mohanty UC, Routray A, Osuri KK, Ramakrishna SSVS, Niyogi D (2014) Impact of Doppler weather radar data on thunderstorm simulation during STORM pilot phase—2009. Nat Hazards 74(3):1403–1427.  https://doi.org/10.1007/s11069-014-1250-0 CrossRefGoogle Scholar
  24. Kirtman BP et al (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601.  https://doi.org/10.1175/BAMS-D-12-00050.1 CrossRefGoogle Scholar
  25. Krishna Kumar K, Martin H, Balaji R (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32(8):L08704.  https://doi.org/10.1029/2004GL021979 CrossRefGoogle Scholar
  26. Krishnamurti TN, Kishtawal CM, Shin DW, Williford CE (2000) Multimodel superensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216.  https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2 CrossRefGoogle Scholar
  27. Kulkarni MA, Singh A, Mohanty UC (2012) Effect of spatial correlation on regional trends in rain events over India. Theor Appl Climatol 107:441–450.  https://doi.org/10.1007/s00704-012-0602-5 CrossRefGoogle Scholar
  28. Magnusson L, Kallen (2013) Factors influencing skill improvements in the ECMWF forecasting system. Mon Weather Rev 141:3142–3153.  https://doi.org/10.1175/MWR-D-12-00318.1 CrossRefGoogle Scholar
  29. Min YM, Vladimir NK, Sang MO (2014) Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: retrospective (1983–2003) and real-time forecasts (2008–2013). J Geophys Res Atmos 119:12132–12150.  https://doi.org/10.1002/2014JD022230 CrossRefGoogle Scholar
  30. Mohanty UC et al (2013) Real-time experimental extended range forecast systemfor Indian southwestmonsoon rainfall: a case study for monsoon 2011. Curr Sci 104(7):856–870Google Scholar
  31. Molteni F, Stockdale T, Balmaseda M, Balsamo G, Buizza R, Ferranti L, Magnusson L, Mogensen K, Palmer T, Vitart F (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Tech Memorandum 656Google Scholar
  32. Nageswararao MM, Mohanty UC, Ramakrishna SSVS, Nair A, Kiran Prasad S (2016a) Characteristics of winter precipitation over Northwest India using high-resolution gridded dataset (1901–2013). Glob Planet Chang 147:67–85.  https://doi.org/10.1016/j.gloplacha.2016.10.017 CrossRefGoogle Scholar
  33. Nageswararao MM, Dhekale BS,Mohanty UC (2016b) Impact of climate variability on various Rabi crops over Northwest India. Theor Appl Climatol  https://doi.org/10.1007/s00704-016-1991-7
  34. Nageswararao MM, Mohanty UC, Osuri KK, Ramakrishna SSVS (2016c) Prediction of winter precipitation over northwest India using ocean heat fluxes. Clim Dyn 47(7):2253–2271.  https://doi.org/10.1007/s00382-015-2962-x CrossRefGoogle Scholar
  35. Nageswararao MM, Mohanty UC, Kiran Prasad S, Osuri KK, Ramakrishna SSVS (2016d) Performance evaluation of NCEP climate forecast system for the prediction of winter temperatures over India. Theor Appl Climatol 126(3):437–451.  https://doi.org/10.1007/s00704-015-1588-6 CrossRefGoogle Scholar
  36. Nageswararao MM, Mohanty UC, Nair A, Ramakrishna SSVS (2016e) Comparative evaluation of performances of two versions of NCEP climate forecast system in predicting winter precipitation over India. Pure Appl Geophys 173(6):2147–2166.  https://doi.org/10.1007/s00024-015-1219-2 CrossRefGoogle Scholar
  37. Nageswararao MM, Mohanty UC, Dimri AP, Krishna K, Osuri (2017) Probability of occurrence of monthly and seasonal winterprecipitation over Northwest India based on antecedent-monthlyprecipitation. Theor Appl Climatol.  https://doi.org/10.1007/s00704-017-2171-0
  38. Nair A, Mohanty UC, Acharya N (2012) Monthly prediction of rainfall over India and its homogeneous zone: a supervised principalcomponent regression approach on global climate models. Theor Appl Climatol.  https://doi.org/10.1007/s00704-012-0660-8
  39. Nair A, Acharya N, Ankita S, Mohanty UC, Panda TC (2013) On the predictability of northeast monsoon rainfall over South Peninsular India in general circulation models. Pure Appl Geophys 170(11):1945–1967.  https://doi.org/10.1007/s00024-012-0633-y CrossRefGoogle Scholar
  40. Nair A, Mohanty UC, Robertson AW, Panda TC, Luo JJ, Yamagata T (2014) An analytical study of hindcasts from general circulation models for Indian summer monsoon rainfall. Meteorol Appl 21:695–707.  https://doi.org/10.1002/met.1395 CrossRefGoogle Scholar
  41. Naiyer A, Sarfraz Ul Haque M (2015) Agriculture play crucial role in the life of Indian economy. Int J Sci Res Manag 3(3):2239–2245Google Scholar
  42. Navone HP, Ceccato HA (1995) Predicting Indian monsoon rainfall: a neural network approach. Clim Dyn 10:305–312.  https://doi.org/10.1007/BF00228029 CrossRefGoogle Scholar
  43. Pai DS, Bhan SC (2014) Monsoon 2013—a report IMD Met monograph: Synoptic Meteorology No. ESSO/IMD/SYNOPTIC MET/01-2014/15, 1-17.Google Scholar
  44. Palmer TN et al (2004) Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872CrossRefGoogle Scholar
  45. Preethi B, Revadekar JV (2013) Kharif food grain yield and daily summer monsoon precipitation over India. Int J Climatol 33:1978–1986CrossRefGoogle Scholar
  46. Preethi B, Kripalani RH, Kumar KK (2010) Indian summer monsoon rainfall variability in global coupled ocean–atmospheric models. Climate Dyn 35:1521–1539.  https://doi.org/10.1007/s00382-009-0657-x CrossRefGoogle Scholar
  47. Preethi B, Mujumdar M, Kripalani RH, Amita P, Krishnan R (2017) Recent trends and teleconnections among South and East Asian summer monsoons in a warming environment. Clim Dyn 48:2489–2505.  https://doi.org/10.1007/s00382-016-3218-0 CrossRefGoogle Scholar
  48. Rajeevan M, Bhate J, Kale J, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  49. Rajeevan M, Pai DS, Kumar RA, Lal B (2007) New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dynamics, 28(7-8): 813-828,  https://doi.org/10.1007/s00382-006-0197-6
  50. Rajeevan M, Unnikrishnan CK, Preethi B (2012) Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Clim Dyn 38:2257–2274.  https://doi.org/10.1007/s00382-011-1061-x CrossRefGoogle Scholar
  51. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci U S A 102:5326–5333CrossRefGoogle Scholar
  52. Ramesh KV, Goswami P (2007) Reduction in temporal and spatial extent of the Indian southwest monsoon. Geophys Res Lett 34:L23704CrossRefGoogle Scholar
  53. Revadekar JV, Preethi B (2012) Statistical analysis of the relationship between summer monsoon precipitation extremes and foodgrain yield over India. Int J Climatol 32:419–429CrossRefGoogle Scholar
  54. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max-Planck- Institut fur Meteorologie Rep. 218: Hamburg, Germany; p. 90Google Scholar
  55. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van Den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19(15):3483–3517.  https://doi.org/10.1175/JCLI3812.13812.1 CrossRefGoogle Scholar
  56. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez RP, HVD D, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208.  https://doi.org/10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  57. Singh A, Kulkarni MA, Mohanty UC, Kar SC, Robertson AW, Mishra G (2012) Prediction of Indian southwest monsoon rainfall using canonical correlation analysis of global circulation model products. Meteorol Appl 19(2):179–188.  https://doi.org/10.1002/met.1333 CrossRefGoogle Scholar
  58. Sinha P, Mohanty UC, Kar SC, Dash SK, Robertson A, Tippett M (2013) Seasonal prediction of the Indian summer monsoon rainfall using canonical correlation analysis of the NCMRWF global model products. Int J Climatol 33:1601–1614.  https://doi.org/10.1002/joc.3536 CrossRefGoogle Scholar
  59. Sinha P, Tiwari PR, Kar SC, Mohanty UC, Raju PVS, Dey S, Sekhar MS (2015) Sensitivity studies of convective schemes and model resolutions in simulations of wintertime circulation and precipitation over the Western Himalayas. Pure Appl Geophys 172:503–530.  https://doi.org/10.1007/s00024-014-0935-3 CrossRefGoogle Scholar
  60. Stephenson DB, Doblas-Reyes FJ (2000) Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus 52:300–322CrossRefGoogle Scholar
  61. Thapliyal V (1982) Stochastic dynamic model for long range prediction of monsoon rainfall in peninsular India. Mausam 33:399–404Google Scholar
  62. Tiwari PR, Kar SC, Mohanty UC, Kumari S, Sinha P, Nair A, Dey S (2014) Skill of precipitation prediction with GCMs over north India during winter season. Int J Clim 34(12):3440–3455.  https://doi.org/10.1002/joc.3921 CrossRefGoogle Scholar
  63. Tiwari PR, Kar SC, Mohanty UC, Dey S, Sinha P, Raju PVS, Shekhar MS (2016) On the dynamical downscaling and bias correction of seasonal-scale winter precipitation predictions over North India. Q J R Meteorol Soc.  https://doi.org/10.1002/qj.2832
  64. Walker GT (1910) Correlation in seasonal variation of weather II. Memoirs of IndiaGoogle Scholar
  65. Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett.  https://doi.org/10.1029/2005GL022734
  66. Wilks DS (1995) Statistical methods in atmospheric sciences, vol 59, 2nd edn. Academic Press, San Diego, 467 pGoogle Scholar
  67. Yadav RK, Rupa Kumar K, Rajeevan M (2012) Characteristic features of winter precipitation and its variability over northwest India. J Earth Syst Sci 121(3):611–623CrossRefGoogle Scholar
  68. Yu Z, Chu PS, Schroeder T (1997) Predictive skills of seasonal to annual rainfall variations in the U.S. Affiliated Pacific Islands: canonical correlation analysis and multivariate principal component regression approaches. J Clim 10:2586–2599CrossRefGoogle Scholar
  69. Yun W-T, Stefanova L, Krishnamurti TN (2003) Improvement of the superensemble technique for seasonal forecasts. J Clim 16:3834–3840CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • U. C. Mohanty
    • 1
    Email author
  • M. M. Nageswararao
    • 1
  • P. Sinha
    • 1
  • A. Nair
    • 1
  • A. Singh
    • 1
  • R. K. Rai
    • 1
  • S. C. Kar
    • 2
  • K. J. Ramesh
    • 3
  • K. K. Singh
    • 3
  • K. Ghosh
    • 3
  • L. S. Rathore
    • 3
  • R. Sharma
    • 4
  • A. Kumar
    • 1
  • B. S. Dhekale
    • 1
  • R. K. S. Maurya
    • 1
  • R. K. Sahoo
    • 1
  • G. P. Dash
    • 1
  1. 1.School of Earth, Ocean and Climate Sciences (SEOCS)Indian Institute of Technology (IIT) BhubaneswarJatniIndia
  2. 2.National Centre for Medium Range Weather Forecasting (NCMRWF)NoidaIndia
  3. 3.India Meteorological Department (IMD)New DelhiIndia
  4. 4.Department of Agriculture, Cooperation & Farmers Welfare (DAC & FW)Ministry of Agriculture & Farmers Welfare, Government of IndiaNew DelhiIndia

Personalised recommendations