Advertisement

Theoretical and Applied Climatology

, Volume 135, Issue 3–4, pp 839–854 | Cite as

Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

  • Gebrekidan WorkuEmail author
  • Ermias Teferi
  • Amare Bantider
  • Yihun T. Dile
Original Paper

Abstract

Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen’s slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

Notes

Acknowledgments

This study would not have been possible without the financial support given to the first author from the Water and Land Resources Center (WLC), Addis Ababa University, and Debretabor University. We are especially indebted to the Ethiopian Meteorological Agency that kindly provides the daily weather data of this study.

References

  1. Alemayehu A, Bewket W (2016) Local climate variability and crop production in the central highlands of Ethiopia. Environ Dev 19:36–48CrossRefGoogle Scholar
  2. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank K, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and rainfall. J Geophys Res 111:D05109.  https://doi.org/10.1029/2005JD006290 Google Scholar
  3. Alexander L, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56:1–18Google Scholar
  4. Ali Y, Crosato A, Mohamed Y, Abdalla, S. And Wright, N. (2014) Sediment balances in the Blue Nile River Basin. Int J Sediment Res 29:1–13Google Scholar
  5. Baldassarre G, Elshamy M, van Griensven A, Soliman E, Kigobe M, Ndomba P, Mutemi J, Mutua F, Moges S, Xuan Y, Solomatine D, Uhlenbrook S (2011) Future hydrology and climate in the River Nile basin: a review. Hydrol Sci J 56(2):199–211CrossRefGoogle Scholar
  6. Betrie G, Mohamed Y, van Griensven A, Srinivasan R (2011) Sediment management modelling in the Blue Nile Basinusing SWAT model. Hydrol Earth Syst Sci 15:807–818CrossRefGoogle Scholar
  7. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–3CrossRefGoogle Scholar
  8. Bewket W, Conway D (2007) A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. Int J Climatol 27:1467–1477CrossRefGoogle Scholar
  9. Buuren S, Groothuis-Oudshoorn K, Robitzsch A, Vink G, Doove L, Jolani S (2015) Package ‘mice’ version 2.25; title multivariate imputation by chained equations.Google Scholar
  10. Cama M, Schillaci C, Kropáˇcek J, Hochschild V, Maerker M (2017) Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands. Geophys Res Abstr 19:EGU2017–EGU1458Google Scholar
  11. Cheung W, Senay G, Singh A (2008) Trends and spatial distributionof annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734CrossRefGoogle Scholar
  12. Conway D, Hulme M (1993) Recent fluctuations in precipitation and runoff over the Nile sub-basins and their impact on main Nile discharge. Clim Chang 25:127–151CrossRefGoogle Scholar
  13. Conway D, Schipper L (2011) Adaptation to climate change in Africa: challenges and opportunities identified from Ethiopia. Glob Environ Chang 21:227–237CrossRefGoogle Scholar
  14. CSA (Central Statistical Agency of Ethiopia) (2007) Summary and Statistical Report of the 2007 Population and Housing Census ResultsGoogle Scholar
  15. CSA (Central Statistical Agency of Ethiopia) (2013) Population projection of Ethiopia for all regions at Wereda level from 2014–2017Google Scholar
  16. EPCC (Ethiopian Panel on Climate Change) (2015) First assessment report, Working Group II Agriculture and Food Security, Published by the Ethiopian Academy of SciencesGoogle Scholar
  17. Folland C, Karl T, Salinge M (2002) Observed climate variability and change. W eather 57:269–278Google Scholar
  18. Funk C, Rowland J, Eilerts G, Kebebe E, Biru N, White E, Galu G (2012) A climate trend analysis of Ethiopia, US Geological Survey, Fact Sheet 3053 USGSGoogle Scholar
  19. Hirsch R, Slack J, Smith R (1982) Techniques for trend assessment for monthly water quality data. Water Resour Res 18:107–121CrossRefGoogle Scholar
  20. IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  21. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation [field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University press, Cambridge, UK, and New York, NY, USA, pp. 555–564Google Scholar
  22. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 ppGoogle Scholar
  23. Keggenhoff I, Elizbarashvili M, Amiri-Farahani A, King L (2014) Trends in daily temperature and rainfall extremes over Georgia, 1971–2010. Weather Clim Extremes 4:75–85CrossRefGoogle Scholar
  24. Kendall M (1975) Rank correlation measures. Charles Griffin, LondonGoogle Scholar
  25. Maidment R, Allan R, Black E (2015) Recent observed and simulated changes in rainfall over Africa. Geophys Res Lett 42:8155–8164.  https://doi.org/10.1002/2015GL065765 CrossRefGoogle Scholar
  26. Mann H (1945) Nonparametric tests against trend. Econometrica 13(3):245–259CrossRefGoogle Scholar
  27. Mekasha, A., Tesfaye, K. and Duncan, A. (2013) Trends in daily observed temperature and rainfall extremes over three Ethiopian eco-environments. Int. J. Climatol. wileyonlinelibrary.com.  https://doi.org/10.1002/joc.3816.
  28. Mengistu D, Bewket W, Lal R (2013) Recent spatiotemporal temperature and rainfall variability and trends over the upper Blue Nile River basin, Ethiopia. Int J Climatol 34:2278–2292CrossRefGoogle Scholar
  29. MoA (Ministry of Agriculture of Ethiopia) (2000) Agroecological zonations of Ethiopia. Addis AbabaGoogle Scholar
  30. MoWR (Ministry of Water Resources) (1998) Abay River Basin Integrated Dev Master Plan. McSweeney, C., New, M., Lizcano, G. and UNDP. (2008) Climate change country profiles: Ethiopia. http://country-profiles.geog.ox.ac.uk.
  31. MRI (Mountain research Intiative) (2015) Elevation-dependent warming in mountain regions of the world mountain research initiative. Nat Clim Chang 5:424–430CrossRefGoogle Scholar
  32. NMSA (National Meteorological Services Agency) (1996) Climatic and agroclimatic resources of Ethiopia. Meteorological research report series, no. 1, Addis Ababa, EthiopiaGoogle Scholar
  33. NMA (National Meteorological Agency) (2007) Climate change national adaptation programme of action (NAPA) of Ethiopia. Ministry of Water ResourcesGoogle Scholar
  34. Peterson T, Manton M (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Am Meteorol Soc 89:1266–1271.  https://doi.org/10.1175/2008BAMS2501.1 CrossRefGoogle Scholar
  35. Pohlert, T. (2016) Package ‘trend’; Title Non-Parametric Trend Tests and Change-Point DetectionGoogle Scholar
  36. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  37. Revadekar J, Hameed S, Collins D, Manton M, Sheikh M, Borgaonkar H, Kothawale D, Adnan M, Ahmed A, Ashraf J, Baidya S, Islam N, Jayasinghearachchi D, Manzoor N, Premalal, K. And. L. Shreshta, M. (2013) Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971–2000. Int J Climatol 33:199–209Google Scholar
  38. Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Climatol 24:973–983CrossRefGoogle Scholar
  39. Seleshi Y, Camberlin P (2006) Recent changes in dry spell and extreme rainfall events in Ethiopia. Theor Appl Climatol 83:181–191CrossRefGoogle Scholar
  40. Sen P (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  41. Shah S, Rehman A, Rashid T, Karim J, Shah S (2016) A comparative study of ordinary least squares regression and Theil-Sen regression through simulation in the presence of outliers. Lasbela, U. J Sci Technol V:137–142Google Scholar
  42. Shang H, Yan J, Gebremichael M, Ayalew S (2011) Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debremarkos. Hydrol Earth Syst Sci 15:1937–1944CrossRefGoogle Scholar
  43. Shanko D, Camberlin P (1998) The effects of the southwest Indian Ocean tropical cyclones on Ethiopian drought. Int J Climatol 18:1373–1388CrossRefGoogle Scholar
  44. Sutcliffe JV, Parks YP (1999) The hydrology of the Nile. IAHS special publication no. 5. IAHS Press, Wallingford 179pGoogle Scholar
  45. Tank K, Peterson T, Quadir D, Dorji S, Zou X, Tang H, Santhosh C, Joshi U, Jaswal K, Kolli RK, Sikder A, Deshpande N, Revadekar J, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki K, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova V, Jones P, New M, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105CrossRefGoogle Scholar
  46. Taye M, Willems P (2012) Temporal variability of hydroclimatic extremes in the Blue Nile basin. Water Resour Res 48:W03513.  https://doi.org/10.1029/2011WR011466 CrossRefGoogle Scholar
  47. Tesemma Z, Mohamed A, Steenhuis T (2010) Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol Process 24(25):3747–3758.  https://doi.org/10.1002/hyp.7893 CrossRefGoogle Scholar
  48. Tesso G, Emana B, Ketema M (2012) A time series analysis of climate variability and its impacts on food production in North Shewa zone in Ethiopia. Afr Crop Sci J 20(2):261–274Google Scholar
  49. Thiel, H. (1950) A rank-invariant method of linear and polynomial regression analysis.Google Scholar
  50. Tierney J, Smerdon J, Anchukaitis K, Seager R (2013) Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493:389–392.  https://doi.org/10.1038/nature11785 CrossRefGoogle Scholar
  51. Turrado C, López M, Lasheras F, Gómez B, Rollé J, Juez F (2014) Missing data imputation of solar radiation data under different atmospheric conditions. Sensors 14:20382–20399.  https://doi.org/10.3390/s141120382 CrossRefGoogle Scholar
  52. Viste E, Sorteberg A (2011) Moisture transport into the Ethiopian highlands. Int. J, ClimatolGoogle Scholar
  53. WMO (World Meteorological Organization) (2009) Guidelines on: analysis of extremes in a changing climate in support of informed decisions for adaptation Climate Data and Monitoring WCDMP-No 72Google Scholar
  54. World Bank (2006) Managing water resources to maximise sustainable growth: a country water resources assistance strategy for Ethiopia. World Bank, Washington, DCGoogle Scholar
  55. Yilma A, Awulachew S (2009) Characterization and atlas of the Blue Nile Basin and its sub-basins. International Water Management InstituteGoogle Scholar
  56. Zhang X, Yang F (2004) RClimDex (1.0) user guide. Climate research branch Environment Canada, Downsview (Ontario)Google Scholar
  57. Zhang X, Alexander L, Hegerl G, Klein-Tank A, Peterson T, Trewin B, Zwiers F (2011) Indices for monitoring changes in extremes based on daily temperature and rainfall data. Wiley Interdiscip. Rev. Clim Chang 2:851–870.  https://doi.org/10.1002/wcc.147 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Environment and Development StudiesAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Center for Food Security StudiesAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.Water and Land Resources CenterAddis Ababa UniversityAddis AbabaEthiopia
  4. 4.College of Agriculture and Life SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations