Advertisement

Theoretical and Applied Climatology

, Volume 135, Issue 3–4, pp 877–891 | Cite as

Performance of near real-time Global Satellite Mapping of Precipitation estimates during heavy precipitation events over northern China

  • Sheng ChenEmail author
  • Junjun HuEmail author
  • Asi Zhang
  • Chao Min
  • Chaoying Huang
  • Zhenqing Liang
Original Paper

Abstract

This study assesses the performance of near real-time Global Satellite Mapping of Precipitation (GSMaP_NRT) estimates over northern China, including Beijing and its adjacent regions, during three heavy precipitation events from 21 July 2012 to 2 August 2012. Two additional near real-time satellite-based products, the Climate Prediction Center morphing method (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), were used for parallel comparison with GSMaP_NRT. Gridded gauge observations were used as reference for a performance evaluation with respect to spatiotemporal variability, probability distribution of precipitation rate and volume, and contingency scores. Overall, GSMaP_NRT generally captures the spatiotemporal variability of precipitation and shows promising potential in near real-time mapping applications. GSMaP_NRT misplaced storm centers in all three storms. GSMaP_NRT demonstrated higher skill scores in the first high-impact storm event on 21 July 2015. GSMaP_NRT passive microwave only precipitation can generally capture the pattern of heavy precipitation distributions over flat areas but failed to capture the intensive rain belt over complicated mountainous terrain. The results of this study can be useful to both algorithm developers and the scientific end users, providing a better understanding of strengths and weaknesses to hydrologists using satellite precipitation products.

Notes

Acknowledgements

Thanks are also given to Dr. Yong Huang from Anhui Meteorological Bureau, Hefei, China, for his help for processing the gauge data; to Dr. Hao Huang from Nanjing University to help processing the geopotential data; to Dr. Jidong Gao from National Sever Storm Laboratory to help interpret the meteorological situations; and to Dr. Ali Berangi from California Institute of Technology and Dr. Yudong Tian from the University of Maryland for their constructive advice and comments to improve the manuscript in early versions.

Funding information

This work was partially supported by the “100 Top Talents Program”(74110-52601108) at Sun Yat-sen University, Guangzhou, Guangdong, China; HyDROS Lab at the University of Oklahoma; Natural Science Foundation of China (no. 41361022 and no. 416661021); “100 Top Talents Program” of Guangxi Zhuang Autonomous Region, Guangxi Scientific Technology Development Program (2014DD29090); and by the State Key Laboratory of Hydraulics and Mountain River Engineering under Open Fund SKHL1310.

References

  1. Aonashi K, Coauthors (2009) GSMaP passive microwave precipitation retrieval algorithm: algorithm description and validation. J Meteor Soc Jpn 87:119–136CrossRefGoogle Scholar
  2. Behrangi A, Lebsock M, Wong S, Lambrigtsen B (2012) On the quantification of oceanic rainfall using spaceborne sensors. J Geophys Res 117:D20105CrossRefGoogle Scholar
  3. Behrangi A, Hsu K-l, Imam B, Sorooshian S, Huffman GJ, Kuligowski RJ (2009) PERSIANN-MSA: a precipitation estimation method from satellite-based multispectral analysis. J Hydrometeorol 10(6):1414–1429.  https://doi.org/10.1175/2009JHM1139.1 CrossRefGoogle Scholar
  4. Behrangi A, Imam B, Hsu K, Sorooshian S, Bellerby TJ, Huffman GJ (2010) REFAME: rain estimation using forward-adjusted advection of microwave estimates. J Hydrometeorol 11(6):1305–1321.  https://doi.org/10.1175/2010JHM1248.1 CrossRefGoogle Scholar
  5. Chen S, Coauthors (2016) Precipitation spectra analysis over China with high-resolution measurements from optimally merged satellite/gauge observations—part I: spatial and seasonal analysis. Ieee J Sel Top Appl Earth Obs Remote Sens 9(7):2966–2978.  https://doi.org/10.1109/JSTARS.2016.2529003 CrossRefGoogle Scholar
  6. Chen S, Coauthors (2013) Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: are remote-sensing products ready for gauge denial scenario of extreme events? J Hydrol 506:4–13.  https://doi.org/10.1016/j.jhydrol.2012.12.026 CrossRefGoogle Scholar
  7. Chen S, Coauthors (2014) Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLoS One 9(4):e89681.  https://doi.org/10.1371/journal.pone.0089681 CrossRefGoogle Scholar
  8. Creutin JD, Borga M (2003) Radar hydrology modifies the monitoring of flash-flood hazard. Hydrol Process 17(7):1453–1456.  https://doi.org/10.1002/hyp.5122 CrossRefGoogle Scholar
  9. Ferraro RR, Coauthors (2005) NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. Geosci Remote Sens IEEE Trans 43(5):1036–1049.  https://doi.org/10.1109/TGRS.2004.843249 CrossRefGoogle Scholar
  10. Gourley JJ, Hong Y, Flamig ZL, Li L, Wang J (2010) Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. J Appl Meteorol Climatol 49(3):437–452.  https://doi.org/10.1175/2009JAMC2302.1 CrossRefGoogle Scholar
  11. Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 49(5):1044–1051.  https://doi.org/10.1175/2009JAMC2298.1 CrossRefGoogle Scholar
  12. Hong Y, Adler R (2007) Towards an early-warning system for global landslides triggered by rainfall and earthquake. Int J Remote Sens 28(16):3713–3719.  https://doi.org/10.1080/01431160701311242 CrossRefGoogle Scholar
  13. Hong Y, Adler RF, Huffman G (2007) An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. Geosci Remote Sens IEEE Trans 45(6):1671–1680.  https://doi.org/10.1109/TGRS.2006.888436 CrossRefGoogle Scholar
  14. Hong Y, Hsu KL, Sorooshian S, Gao X (2004) Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J Appl Meteorol 43(12):1834–1853.  https://doi.org/10.1175/JAM2173.1 CrossRefGoogle Scholar
  15. Huang Y, Coauthors (2013) Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water 6(1):32–44.  https://doi.org/10.3390/w6010032 CrossRefGoogle Scholar
  16. Huffman GJ, Bolvin DT, Nelkin EJ, Adler RF(2011) Highlights of version 7 TRMM multi-satellite precipitation analysis (TMPA). 5th Internat. Precip. Working Group Workshop, Workshop Program and Proceedings, 11–15 October 2010, Hamburg, Germany.C. Klepp and G. Huffman Eds.Reports on Earth Sys. Sci., 100/2011, Max-Planck-Institut für Meteorologie.ISSN 1614–1199, 109–110 Google Scholar
  17. Huffman GJ, Coauthors (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55.  https://doi.org/10.1175/JHM560.1 CrossRefGoogle Scholar
  18. JAXA/EORC (2013) USER’S GUIDE FOR Global Rainfall Map in Near-Real-Time by JAXA Global Rainfall Watch (GSMaP_NRT)Google Scholar
  19. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5(3):487–503.  https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 CrossRefGoogle Scholar
  20. Kachi M, Coauthors (2011) Development and utilization of “JAXA Global Rainfall Watch” system based on combined microwave and infrared radiometers aboard satellites. IEEJ Trans Fundam Mater (in Japanese) 131(9):729–737.  https://doi.org/10.1541/ieejfms.131.729 CrossRefGoogle Scholar
  21. Kidd C, Kniveton DR, Todd MC, Bellerby TJ (2003) Satellite rainfall estimation using combined passive microwave and infrared algorithms. J Hydrometeorol 4(6):1088–1104.  https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2 CrossRefGoogle Scholar
  22. Kubota T, Ushio T, Shige S, Kida S, Kachi M, Okamoto KI (2009) Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J Meteor Soc Jpn 87:203–222CrossRefGoogle Scholar
  23. Kubota T, Coauthors (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. Geosci Remote Sens IEEE Trans 45(7):2259–2275.  https://doi.org/10.1109/TGRS.2007.895337 CrossRefGoogle Scholar
  24. Li L, Ngongondo CS, Xu CY, Gong L (2012) Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in southern AfricaGoogle Scholar
  25. Negri AJ, Adler RF (1993) An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J Appl Meteorol 32(2):357–373.  https://doi.org/10.1175/1520-0450(1993)032<0357:AIOTSI>2.0.CO;2 CrossRefGoogle Scholar
  26. Ngo-Duc T, Matsumoto J, Kamimera H, Bui H-H (2013) Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia–ThuBon River Basin in Central Vietnam using an artificial neural network. Hydrol Res Lett 7(4):85–90.  https://doi.org/10.3178/hrl.7.85 CrossRefGoogle Scholar
  27. Ren Z, Wang G, Zou F, Zhang H (2003) The research of precipitation measurement errors in China. Acta Meteorol Sin 61:621–627Google Scholar
  28. Shige S, Yamamoto MK, Taniguchi A (2014) Improvement of TMI rain retrieval over the Indian subcontinent. In: Lakshmi V, Alsdorf D, Anderson M, Biancamaria S, Cosh M, Entin J, Huffman G, Kustas W, van Oevelen P, Painter T, Parajka J, Rodell M, Rüdiger C (eds) Remote sensing of the terrestrial water cycle. John Wiley & Sons, Inc, Hoboken.  https://doi.org/10.1002/9781118872086.ch2
  29. Shige S, Yamada T, Tsukiyama T, Kida S (2009) The GSMaP precipitation retrieval algorithm for microwave sounders. Part I: over-ocean algorithm. IEEE Trans Geosci Remote Sens 47:5CrossRefGoogle Scholar
  30. Shige S, Kida S, Ashiwake H, Kubota T, Aonashi K (2013) Improvement of TMI rain retrievals in mountainous areas. J Appl Meteorol Climatol 52(1):242–254.  https://doi.org/10.1175/JAMC-D-12-074.1 CrossRefGoogle Scholar
  31. Shrestha M, Takara K, Kubota T, Bajracharya S (2011) Verification of GSMaP rainfall estimates over the central Himalayas. J Jpn Soc Civil Eng, Ser B1 (Hydraul Eng) 67:I_37–I_42Google Scholar
  32. Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046.  https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 CrossRefGoogle Scholar
  33. Stephens GL, Kummerow CD (2007) The remote sensing of clouds and precipitation from space: a review. J Atmos Sci 64(11):3742–3765.  https://doi.org/10.1175/2006JAS2375.1 CrossRefGoogle Scholar
  34. Taniguchi A, Coauthors (2013) Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J Hydrometeorol 14(6):1859–1871.  https://doi.org/10.1175/JHM-D-13-047.1 CrossRefGoogle Scholar
  35. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106(D7):7183–7192.  https://doi.org/10.1029/2000JD900719 CrossRefGoogle Scholar
  36. Tian Y, Peters-Lidard CD, Adler RF, Kubota T, Ushio T (2010) Evaluation of GSMaP precipitation estimates over the contiguous United States. J Hydrometeorol 11(2):566–574.  https://doi.org/10.1175/2009JHM1190.1 CrossRefGoogle Scholar
  37. Tuttle JD, Carbone RE, Arkin PA (2008) Comparison of ground-based radar and geosynchronous satellite climatologies of warm-season precipitation over the United States. J Appl Meteorol Climatol 47(12):3264–3270.  https://doi.org/10.1175/2008JAMC2000.1 CrossRefGoogle Scholar
  38. Ushio T, Coauthors (2009) A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J Meteorol Soc Jpn Ser II 87:137–151CrossRefGoogle Scholar
  39. Veerakachen W, Raksapatcharawong M, Seto S (2014) Performance evaluation of Global Satellite Mapping of Precipitation (GSMaP) products over the Chaophraya River basin, Thailand. Hydrol Res Lett 8(1):39–44.  https://doi.org/10.3178/hrl.8.39 CrossRefGoogle Scholar
  40. Wang J, Coauthors (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol Sci J 56(1):84–98.  https://doi.org/10.1080/02626667.2010.543087 CrossRefGoogle Scholar
  41. Wang K, Wang L, Wei YM, Ye M (2013) Beijing storm of July 21, 2012: observations and reflections. Nat Hazards 1–6Google Scholar
  42. Yamamoto MK, Shige S (2015) Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos Res 163:36–47.  https://doi.org/10.1016/j.atmosres.2014.07.024 CrossRefGoogle Scholar
  43. Yamamoto MK, Ueno KI, Nakamura K (2011) Comparison of satellite precipitation products with rain gauge data for the Khumb region, Nepal Himalayas. J Meteorol Soc Jpn Ser II 89A:597–610CrossRefGoogle Scholar
  44. Zhang DL, Lin Y, Zhao P, Yu X, Wang S, Kang H, Ding Y (2013a) The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys Res Lett 40:1426–1431.  https://doi.org/10.1002/grl.50304 CrossRefGoogle Scholar
  45. Zhang X, Anagnostou EN, Frediani M, Solomos S, Kallos G (2013b) Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas. J Hydrometeorol 14(6):1844–1858.  https://doi.org/10.1175/JHM-D-12-0174.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesGuangzhouChina
  3. 3.Hydrometeorology and Remote Sensing Laboratory and School of Civil Engineering and Environmental ScienceUniversity of OklahomaNormanUSA
  4. 4.Cooperative Institute for Mesoscale Meteorological StudiesUniversity of OklahomaNormanUSA
  5. 5.Key Laboratory of Environment Change and Resources Use in Beibu GulfGuangxiTeachers Education UniversityNanningChina

Personalised recommendations