Skip to main content
Log in

Trends in the frequency of synoptic types in central-southern Chile in the period 1961–2012 using the Jenkinson and Collison synoptic classification

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Atmospheric circulation patterns in southern Chile (42° 30′ S) were studied in order to determine and analyse the most characteristic synoptic types and their recent trends, as well as to gain an understanding of how they are associated with low-frequency variability patterns. According to the Jenkinson and Collison (J&C) classification method, a 16-point grid of sea-level pressure data was employed. The findings reveal that some synoptic types show statistically significant trends with a 95% confidence level, positively for anticyclonic westerly hybrids (AW) and advective types for third and fourth quadrant wind flows (W, NW, and N) and negatively for SW and cyclonic hybrids (CS and CSW). A model has been constructed of the linear regression of some weather types with teleconnections that most affect Chile: the undetermined types (U), AW were associated with El Niño or the warm phase of the Pacific Decadal Oscillation (PDO), whereas the cyclonic northerly and cyclonic northeasterly types (CN and CNE) were associated with La Niña or cool phase of the PDO. The weather types associated with Antarctic Oscillation (AAO) in its positive phase are anticyclonic northerly and northeasterly and northerly advection types, while in its negative phase are cyclonic southwesterly and advection types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Available at http://www.cru.uea.ac.uk/cru/data/soi/soi.dat

  2. Available at http://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html

  3. Available at http://jisao.washington.edu/pdo/PDO.latest

  4. Available at http://www.jisao.washington.edu/aao/slp/

References

  • Ancapichun S, Garces-Vargas J (2015) Variability of the Southeast Pacific Subtropical Anticyclone and its impact on sea surface temperature off north-central Chile. Cienc Mar 41(1):1–20

    Article  Google Scholar 

  • Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys Res Lett 43(1):413–421

    Article  Google Scholar 

  • Donat M, Lowry A, Alexander L, O’Gorman P, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang 6:508–513. https://doi.org/10.1038/NCLIMATE2941

    Article  Google Scholar 

  • El-Dessouky TM, Jenkinson AF (1975) An objective daily catalogue of surface pressure, flow and vorticity indices for Egypt and its use in monthly rainfall forecasting. Synoptic Climatology Branch Memorandum no. 46, Bracknell, Meteorological Office, London

  • Frias TF (2008) Padrões de circulação atmosférica no Chile. Tese de Mestrado em ciências físicas (Meteorologia), Universidade de Lisboa

  • Frias T.F., Trigo R., Garreaud, R.D. (2009) Weather type classification over Chile; patterns, trends, and impact in precipitation and temperature. Geophysical Research Abstracts, Vol. 11, EGU−8432

  • Grimalt M, Tomàs M, Alomar G, Martin-Vide J, Moreno-García MC (2013) Determination of the Jenkinson and Collison’s weather types for the Western Mediterranean basin over the 1948-2009 period. Temporal analysis Atmosfera 26:75–94

    Google Scholar 

  • Garreaud RD, Aceituno P (2007) Atmospheric circulation over South America: mean features and variability. Veblen T., Young K. and Orme A. The Physical Geography of South America, Oxford University Press, In Chapter 2

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3):180–195

    Article  Google Scholar 

  • Hamilton LC, Stampone MD (2013) Blowin’in the wind: short-term weather and belief in anthropogenic climate change. Weather, Climate, and Society 5(2):112–119

    Article  Google Scholar 

  • Hess P, Brezowsky H (1952) Katalog der grosswetterlagen Europas. Berichte Deutsche Wetterdienstes 15(113):39

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014–impacts. Regional Aspects. Cambridge University Press, Adaptation and Vulnerability

    Book  Google Scholar 

  • Jenkinson AF, Collison P (1977) An initial climatology of gales over the North Sea. Synoptic Climatology Branch Memorandum no. 62, Bracknell, Meteorological Office, London

  • Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective classification scheme. Int J Climatol 13:655–663

    Article  Google Scholar 

  • Jones PD, Harpham C, Briffa KR (2013) Lamb weather types derived from reanalysis products. Int J Climatol 33:1129–1139

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Wollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40 year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Lamb HH (1972) British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971.Geophysical memoir 116, HMSO, London

  • Linderson M (2001) Objective classification of atmospheric circulation over southern Scandinavia. Int J Climatol 21:155–169

    Article  Google Scholar 

  • Lund IA (1963) Map-pattern classification by statistical methods. J Appl Meteorol 2:56–65

    Article  Google Scholar 

  • Martín-Vide J (2002) Aplicación de la clasificación sinóptica automática de Jenkinson y Collison a días de precipitación torrencial en el este de España. In: Cuadrat JM, Vicente SM, Saz MA (eds) La información climática como herramienta de gestión ambiental. Universidad de Zaragoza, Zaragoza, pp 123–127

    Google Scholar 

  • Martín-Vide J (2005) Los mapas del tiempo. Mataró, Davinci Continental

    Google Scholar 

  • Post P, Truija V, Tuulik J (2002) Circulation weather types and their influence on temperature and precipitation in Estonia. Boreal Environ Res 7:281–289

    Google Scholar 

  • Quintana J, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43° S. Atmósfera 25(1):1–22

    Google Scholar 

  • Romero H (1985) Geografía de los climas de Chile. Tomo XI Colección de Geografía de Chile, Instituto Geográfico Militar (IGM)

    Google Scholar 

  • Rubio-Álvarez E, McPhee J (2010) Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952–2003. Water Resour Res 46(5)

  • Sarricolea P, Meseguer-Ruiz Ó, Martín-Vide J (2014) Variabilidad y tendencias climáticas en Chile central en el período 1950–2010 mediante la determinación de los tipos sinópticos de Jenkinson y Collison. Boletín de la Asociación de Geógrafos Españoles 64:227–247

    Google Scholar 

  • Sarricolea P, Herrera-Ossandon M, Meseguer-Ruiz Ó (2017) Climatic regionalisation of continental Chile. Journal of Maps 13(2):66–73

    Article  Google Scholar 

  • Spellman G (2000) The use of an index-based regression model for precipitation analysis on the Iberian Peninsula. Theor Appl Climatol 66:229–239

    Article  Google Scholar 

  • Spellman G (2017) An assessment of the Jenkinson and Collison synoptic classification to a continental mid-latitude location. Theor Appl Climatol 128(3–4):731–744

    Article  Google Scholar 

  • Štěpánek P. (2003) AnClim - software for time series analysis. Dept. of Geography, Fac. of Natural Sciences, MU, Brno. 1.47 MB

  • Stehlík J (2001) Weather to weather links: relationships between Czech circulation pattern classification and other European regional classification schemes. Acta Universitatis Carolinae Geographica 2:155–167

    Google Scholar 

  • Tang L, Chen D, Karlsson P, Gu Y, Ou T (2009) Synoptic circulation and its influence on spring and summer surface ozone concentration in southern Sweden. Boreal Environ Res 14:889–902

    Google Scholar 

  • Trenberth KE (1991) Storm tracks in the Southern Hemisphere. Journal of Atmospheric Sciences 48:2159–2178

    Article  Google Scholar 

  • Trigo R, DaCamara C (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581

    Article  Google Scholar 

  • Yarnal B, Ac C, Frakes B, Brown D (2001) Developments and prospects in synoptic climatology. Int J Climatol 21:1923–1950

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge data input from the NCEP/NCAR Reanalysis project, taken from its website http://www.esrl.noaa.gov/psd/. Furthermore, this research study was financed by the FONDECYT Initiation into Research Projects No. 11130629 and 11160059, FONDECYT Postdoctoral Grant No. 3130633, the Climatology Group (2014SGR300, Catalan Government), and the Convenio de Desempeño UTA-MINEDUC. Luis Outeiro also wants to thank Xunta de Galicia Postdoctoral program I2C (2015–2018) for their support. We would like to acknowledge the OLISTIS team, a language services cooperative specialised in Earth science (www.olistis.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Sarricolea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarricolea, P., Meseguer-Ruiz, O., Martín-Vide, J. et al. Trends in the frequency of synoptic types in central-southern Chile in the period 1961–2012 using the Jenkinson and Collison synoptic classification. Theor Appl Climatol 134, 193–204 (2018). https://doi.org/10.1007/s00704-017-2268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2268-5

Navigation