Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 985–996 | Cite as

Long-term evolution of the Lower Danube discharge and corresponding climate variations: solar signature imprint

  • Venera Dobrica
  • Crisan Demetrescu
  • Ileana Mares
  • Constantin Mares
Original Paper

Abstract

The possible changes in temperature and precipitation regime are expected to lead to changes in the water regime of rivers. In this study, we investigate the long-term evolution of Lower Danube discharge in connection to variations in the precipitation in the Upper-Middle and Lower Danube Basins. The analysis is given by using annual means data from four gauges along the river, on the Romanian territory, namely, Orsova, Ceatal, Sulina, and Sf. Gheorghe, and from 27 weather stations in the Danube Basin. The comparison of the average precipitation in the Upper and Middle Danube Basin, as calculated from the records of 17 weather stations, with the discharge at Orsova, at the entry in the Lower Danube segment, shows correlated interannual and multi-decadal variations. The variations in precipitation in the Lower Danube Basin, recorded at ten weather stations, show up to a certain degree in variations of the tributary rivers discharge and in the discharge difference between the upstream station Orsova and the downstream station Ceatal. The precipitation and discharge data from the two sub-basins have been examined from the viewpoint of multi-decadal variability associated with Atlantic variability and with solar variability at decadal and multi-decadal timescales. Significant variations at the two timescales have been found.

Notes

Acknowledgements

The study has been done in the frame of the project PNII-RU-TE 21/2011, COST Action ES1005-TOSCA, and COST Action ES1102-VALUE. We thank anonymous reviewers for constructive and helpful comments.

References

  1. Antico A, Schlotthauer G, Torres ME (2014) Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: application to the Paraná River Basin. J Geophys Res Atmos 119:1218–1233. doi: 10.1002/2013JD020420 CrossRefGoogle Scholar
  2. Bice D, Montanari A, Vučetić V, Vučetić M (2012) The influence of regional and global climatic oscillations on Croatian climate. Int J Climatol 32:1537–1557CrossRefGoogle Scholar
  3. Bojariu R, Giorgi F (2005) The North Atlantic Oscillation signal in a regional climate simulation for the European region. Tellus A 57:641–653. doi: 10.1111/j.1600-0870.2005.00122.x CrossRefGoogle Scholar
  4. Cliver EW, Boriakoff V, Bounar KH (1996) The 22-year cycle of geomagnetic and solar wind activity. J Geophys Res 101:27091–27109CrossRefGoogle Scholar
  5. Courtillot V, Le Mouël JL, Blanter E, Shnirman M (2010) Evolution of seasonal temperature disturbances and solar forcing in the US North Pacific. J Atmos Sol-Terr Phys 72:83–89. doi: 10.1016/j.jastp.2009.10.011 CrossRefGoogle Scholar
  6. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Clim Dyn 13:757–767CrossRefGoogle Scholar
  7. de Jager C, Duhau S (2009) Episodes of relative global warming. J Atmos Sol Terr Phys 71:194–198. doi: 10.1016/j.jastp.2009.05.006 CrossRefGoogle Scholar
  8. Demetrescu C, Dobrica V (2008) Signature of Hale and Gleissberg solar cycles in the geomagnetic activity. J Geophys Res Space Phys 133:A02103. doi: 10.1029/2007JA012570 Google Scholar
  9. Demetrescu C, Dobrica V (2014) Multi-decadal ingredients of the secular variation of the geomagnetic field. Insights from long time series of observatory data. Phys Earth Planet Inter 231:39–55. doi: 10.1016/j.pepi.2014.03.001 CrossRefGoogle Scholar
  10. Dettinger MD, Diaz HF (2000) Global characteristics of stream flow seasonality and variability. J Hydrometeorol 1(4):289–310CrossRefGoogle Scholar
  11. Dobrica V, Demetrescu C, Boroneant C, Maris G (2009) Solar and geomagnetic activity effects on climate at regional and global scales: case study—Romania. J Atmos Sol Terr Phys 71:1727–1735. doi: 10.1016/j.jastp.2008.03.022 CrossRefGoogle Scholar
  12. Dobrica V, Demetrescu C, Maris G (2010) On the response of the European climate to the solar/geomagnetic long-term activity. Ann Geophys 53(4):39–48Google Scholar
  13. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:277–280CrossRefGoogle Scholar
  14. Fu C, James AL, Wachowiak MP (2012) Analyzing the combined influence of solar activity and El Nino on streamflow across southern Canada. Water Resour Res 48:W05507. doi: 10.1029/2011WR011507 CrossRefGoogle Scholar
  15. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1). doi: 10.1029/2001RG000092
  16. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi: 10.1029/2009RG000282 CrossRefGoogle Scholar
  17. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, Hardiman S, Butchart N, Knight J, Sutton R, Kodera K (2013) A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos 118:13405–13420. doi: 10.1002/2013JD020062 CrossRefGoogle Scholar
  18. Gray LJ, Woollings TJ, Andrews M, Knight J (2016) Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Q J R Meteorol Soc 142:1890–1903CrossRefGoogle Scholar
  19. Haigh J (2007) The Sun and the Earth’s climate. Living Rev Sol Phys 4:1–64CrossRefGoogle Scholar
  20. Huebener H, Mareş I, Mareş C, Cubasch U, Stanciu P (2007) Estimating Romanian rainfall contribution to lower Danube discharge. Geophysical Research Abstracts 9: EGU2007-A-08910. ISSN 1029-7006Google Scholar
  21. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  22. Ionita M, Rimbu N, Chelcea S, Patrut S (2013) Multidecadal variability of summer temperature over Romania and its relation with Atlantic Multidecadal Oscillation. Theor Appl Climatol 113:305–315CrossRefGoogle Scholar
  23. Johnstone JA (2011) A quasi-biennial signal in western US hydroclimate and its global teleconnections. Clim Dyn 36:663–680CrossRefGoogle Scholar
  24. Klein Tank AMG, Wijngaard J, Konnen G, Bohm R, Demaree G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Muller-Westermeier G, Tzanakou M, Szalai S, Palsdottir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen A, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Lopez J, Dahlstrom B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander L, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  25. Knudsen MF, Jacobsen BH, Seidenkrantz M-S, Olsen J (2014) Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat Commun 5:3323. doi: 10.1038/ncomms4323 CrossRefGoogle Scholar
  26. Le Mouël J-L, Blanter E, Shnirman M, Courtillot V (2009) Evidence for solar forcing in variability of temperatures and pressures in Europe. J Atmos Sol-Terr Phys 71:1309–1321. doi: 10.1016/j.jastp.2009.05.006 CrossRefGoogle Scholar
  27. Le Mouël J-L, Kossobokov V, Courtillot V (2010) A solar pattern in the longest temperature series from three stations in Europe. J Atmos Sol-Terr Phys 72:62–76. doi: 10.1016/j.jastp.2009.10.009 CrossRefGoogle Scholar
  28. Lockwood M (2012) Solar influence on global and regional climates. Surv Geophys 33:503–534. doi: 10.1007/s10712-012-9181-3 CrossRefGoogle Scholar
  29. Lohmann G, Rimbu N, Dima M (2004) Climate signature of solar irradiance variations: analysis of long-term instrumental, historical and proxy data. Int J Climatol 24:1045–1056CrossRefGoogle Scholar
  30. Mann ME, Lees J (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Chang 33:409–445CrossRefGoogle Scholar
  31. Mares C, Mares I (2003) Improvement of long-range forecasting by EEOF extrapolation using an AR-MEM model. Weather Forecast 18:311–324CrossRefGoogle Scholar
  32. Mares C, Mares I, Stanciu A (2009) Extreme value analysis in the Danube lower basin discharge time series in the twentieth century. Theor Appl Climatol 95:223–233. doi: 10.1007/s00704-008-0001-0 CrossRefGoogle Scholar
  33. Mayaud PN (1972) The aa indices: a 100-year series characterizing the geomagnetic activity. J Geopys Res 72:6870–6874CrossRefGoogle Scholar
  34. Mayaud PN (1980) Derivation, meaning, and use of geomagnetic indices. In: Geophysical Monograph Series 22. AGU, pp 154Google Scholar
  35. Mufti S, Shah GN (2011) Solar-geomagnetic activity influence on Earth’s climate. J Atmos Sol Terr Phys 73:1607–1615CrossRefGoogle Scholar
  36. Mursula K, Usoskin IG, Kovaltsov GA (2001) Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field. Sol Phys 198:51–56CrossRefGoogle Scholar
  37. Pekárová P, Pekár J (2006) Long-term discharge and prediction for the Turnu Severin station (the Danube) using a linear autoregressive model. Hydrol Process 20(5):1217–1228CrossRefGoogle Scholar
  38. Pekárová P, Miklanek P, Pekár J (2003) Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th–20th centuries. J Hydrol 27:62–79CrossRefGoogle Scholar
  39. Pekárová P, Miklanek P, Pekár J (2007) Long-term Danube monthly discharge prognosis for the Bratislava station using stochastic models. Meteorologický časopis 10:211–218Google Scholar
  40. Perry CA (1994) Solar-irradiance variations and regional precipitation fluctuations in the western USA. Int J Climatol 14:969–983CrossRefGoogle Scholar
  41. Perry CA (1995) Association between solar-irradiance variations and hydroclimatology of selected regions of the USA. Proceedings of the Sixth International Meeting on Statistical Climatology, p 239Google Scholar
  42. Prestes A, Rigozo NR, Echer E, Vieira LEA (2006) Spectral analysis of sunspot number and geomagnetic indices (1868–2001). J Atmos Sol Terr Phys 68:182–190CrossRefGoogle Scholar
  43. Rauthe M, Paeth H (2004) Relative importance of Northern Hemisphere circulation modes in predicting regional climate change. J Clim 17:4180–4189CrossRefGoogle Scholar
  44. Reid GC (2000) Solar variability and the Earth’s climate: introduction and overview. Space Sci Rev 94(1–2):1–11CrossRefGoogle Scholar
  45. Rimbu N, Boroneant C, Buta C, Dima M (2002) Decadal variability of Danube streamflow and its relation with global SST and atmospheric circulation. Int J Climatol 22:1169–1179CrossRefGoogle Scholar
  46. Rimbu N, Dima M, Lohmann G, Stefan S (2004) Impacts on the North Atlantic Oscillation and the El Nino–Southern Oscillation on Danube river flow variability. Geophys Res Lett 31:L23203. doi: 10.1029/2004GL020559 CrossRefGoogle Scholar
  47. Rimbu N, Dima M, Lohmann G, Musat I (2005) Seasonal prediction of Danube flow variability based on stable teleconnection with sea surface temperature. Geophys Res Lett 32:L21704. doi: 10.1029/2005GL024241 CrossRefGoogle Scholar
  48. Rogers ML, Richards MT, Richards DStP (2006) Long-term variability in the length of the solar cycle. Astrophys J arXiv: astro-ph/0606426v3Google Scholar
  49. Rozelot JP (1994) On the stability of the 11-year solar cycle period (and a few others). Sol Phys 149:149–154CrossRefGoogle Scholar
  50. Russell CT, Mulligan T (1995) The 22-year variation of geomagnetic activity: implications for polar magnetic field of the Sun. Geophys Res Lett 22:287–328CrossRefGoogle Scholar
  51. Scafetta N (2010) Empirical evidence for a celestial origin of the climate oscillations and its implications. J Atmos Sol Terr Phys 72:951–970. doi: 10.1016/j.jastp.2010.04.015 CrossRefGoogle Scholar
  52. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  53. Soon W, Dutta K, Legates DR, Velasco V, Zhang W (2011) Variation in surface air temperature of China during the 20th century. J Atmos Sol Terr Phys 73:2331–2344CrossRefGoogle Scholar
  54. Thomson DJ (1982) Spectrum estimation and harmonic analysis. IEEE Proc 70:1055–1096CrossRefGoogle Scholar
  55. Wu Z, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104:14889–14894. doi: 10.1073/pnas.0701020104 CrossRefGoogle Scholar
  56. Yiou P, Bard E, Dandin P, Legras B, Naveau P, Rust HW, Terray L, Vrac M (2010) Statistical issues about solar-climate relations. Clim Past 6:565–573. doi: 10.5194/cp-6-565-2010 CrossRefGoogle Scholar
  57. Zanchettin D, Rubino A, Traverso P, Tomasino M (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi: 10.1029/2007JD009157 CrossRefGoogle Scholar
  58. Zhai Q (2017) Evidence for the effect of sunspot activity on the El Niño/Southern Oscillation. New Astron 52:1–7. doi: 10.1016/J.newast.2016.09.004 CrossRefGoogle Scholar
  59. Zhao J, Han Y-B, Li Z-A (2004) The effect of solar activity on the annual precipitation in the Beijing area. Chin J Astron Astrophys 4:189–181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Venera Dobrica
    • 1
  • Crisan Demetrescu
    • 1
  • Ileana Mares
    • 1
  • Constantin Mares
    • 2
  1. 1.Institute of GeodynamicsRomanian AcademyBucharestRomania
  2. 2.National Institute of Hydrology and Water ManagementBucharestRomania

Personalised recommendations