Advertisement

Theoretical and Applied Climatology

, Volume 133, Issue 3–4, pp 851–866 | Cite as

High-stability algorithm for the three-pattern decomposition of global atmospheric circulation

  • Jianbo Cheng
  • Chenbin Gao
  • Shujuan Hu
  • Guolin Feng
Original Paper
  • 177 Downloads

Abstract

In order to study the atmospheric circulation from a global-wide perspective, the three-pattern decomposition of global atmospheric circulation (TPDGAC) has been proposed in our previous studies. In this work, to easily and accurately apply the TPDGAC in the diagnostic analysis of atmospheric circulation, a high-stability algorithm of the TPDGAC has been presented. By using the TPDGAC, the global atmospheric circulation is decomposed into the three-dimensional (3D) horizontal, meridional, and zonal circulations (three-pattern circulations). In particular, the global zonal mean meridional circulation is essentially the three-cell meridional circulation. To demonstrate the rationality and correctness of the proposed numerical algorithm, the climatology of the three-pattern circulations and the evolution characteristics of the strength and meridional width of the Hadley circulation during 1979–2015 have been investigated using five reanalysis datasets. Our findings reveal that the three-pattern circulations capture the main features of the Rossby, Hadley, and Walker circulations. The Hadley circulation shows a significant intensification during boreal winter in the Northern Hemisphere and shifts significantly poleward during boreal (austral) summer and autumn in the Northern (Southern) Hemisphere.

Notes

Acknowledgements

We thank Jifan Chou, Jie Shen, and Shouhong Wang for valuable discussions and suggestions on this work. This study is jointly supported by the National Natural Science Foundation of China (Grants 41475068, 41530531, and 41630421) and the Foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University from the Fundamental Research Funds for the Central Universities (lzujbky-2017-kb02).

Supplementary material

704_2017_2226_MOESM1_ESM.pdf (11 mb)
ESM 1 (PDF 11280 kb)

References

  1. Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2747–2763. doi: 10.1007/s00382-014-2091-y CrossRefGoogle Scholar
  2. Cai W, Cowan T, Thatcher M (2012) Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci Rep 2:702. doi: 10.1038/srep00702 CrossRefGoogle Scholar
  3. Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:136–162. doi: 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2 CrossRefGoogle Scholar
  4. Chen J, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841. doi: 10.1126/science.1065835 CrossRefGoogle Scholar
  5. Chen S, Wei K, Chen W, Song L (2014) Regional changes in the annual mean Hadley circulation in recent decades. J Geophys Res 119:7815–7832. doi: 10.1002/2014JD021540 Google Scholar
  6. Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time teries using reanalyses and satellite observations. J Clim 25:1061–1078. doi: 10.1175/Jcli-D-11-00127.1 CrossRefGoogle Scholar
  7. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  8. Deng B, Liu H, Chou J (2010) An analysis on large-scale air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean during ENSO events. J Trop Meteorol 16:305–312Google Scholar
  9. Diaz HF, Bradley RS (2004) The Hadley circulation: present, past and future. Kluwer Academic Publishers, The NetherlandsCrossRefGoogle Scholar
  10. Dong B, Lu R (2013) Interdecadal enhancement of the Walker circulation over the tropical Pacific in the late 1990s. Adv Atmos Sci 30:247–262. doi: 10.1007/s00376-012-2069-9 CrossRefGoogle Scholar
  11. Ebita A et al (2011) The Japanese 55-year reanalysis “JRA-55”: an interim report. SOLA 7:149–152. doi: 10.2151/sola.2011-038 CrossRefGoogle Scholar
  12. England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4:222–227. doi: 10.1038/nclimate2106 CrossRefGoogle Scholar
  13. Feng J, Li J, Jin F, Liu Z, Nan X, Guo Y (2016) Contrasting responses of the Hadley circulation to equatorially asymmetric and symmetric meridional sea surface temperature structures. J Clim 29:8949–8963. doi: 10.1175/jcli-d-16-0171.1 CrossRefGoogle Scholar
  14. Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179. doi: 10.1126/science.1125566 CrossRefGoogle Scholar
  15. Hartmann DL (1994) Global physical climatology. Academic Press, San DiegoGoogle Scholar
  16. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi: 10.1175/Jcli3990.1 CrossRefGoogle Scholar
  17. Holton JR (2004) Synoptic-scale motions I: quasi-geostrophic analysis. In: Cynar F (ed) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Amsterdam, pp 139–176Google Scholar
  18. Hosking JS, Russo MR, Braesicke P, Pyle JA (2012) Tropical convective transport and the Walker circulation. Atmos Chem Phys 12:9791–9797. doi: 10.5194/acp-12-9791-2012 CrossRefGoogle Scholar
  19. Hu S (2006) The three-dimensional expansion of global atmospheric circumfluence and characteristic analyze of atmospheric vertical motion. Dissertation, Lanzhou University (in Chinese) Google Scholar
  20. Hu S (2008) Connection between the short period evolution structure and vertical motion of the subtropical high pressure in July 1998. J Lanzhou Univ 44:28–32 (in Chinese) Google Scholar
  21. Hu S, Cheng J, Chou J (2017) Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition. Clim Dyn. doi: 10.1007/s00382-017-3530-3
  22. Hu S, Chou J, Cheng J (2015) Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems. Clim Dyn. doi: 10.1007/s00382-015-2818-4
  23. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7:5229–5236. doi: 10.5194/acp-7-5229-2007 CrossRefGoogle Scholar
  24. Hu Y, Zhou C, Liu J (2011) Observational evidence for poleward expansion of the Hadley circulation. Adv Atmos Sci 28:33–44. doi: 10.1007/s00376-010-0032-1 CrossRefGoogle Scholar
  25. Hudson RD, Andrade MF, Follette MB, Frolov AD (2006) The total ozone field separated into meteorological regimes–part II: Northern Hemisphere mid-latitude total ozone trends. Atmos Chem Phys 6:5183–5191. doi: 10.5194/acp-6-5183-2006 CrossRefGoogle Scholar
  26. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  27. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  28. Kiladis GN, Feldstein SB (1994) Rossby wave propagation into the tropics in two GFDL general circulation models. Clim Dyn 9:245–252. doi: 10.1007/BF00208256 CrossRefGoogle Scholar
  29. Kiladis GN, Weickmann KM (1992) Extratropical forcing of tropical Pacific convection during northern winter. Mon Wea Rev 120:1924–1939. doi: 10.1175/1520-0493(1992)120<1924:Efotpc>2.0.Co;2 CrossRefGoogle Scholar
  30. L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Chang 3:571–576. doi: 10.1038/nclimate1840 CrossRefGoogle Scholar
  31. Liu H, Hu S, Xu M, Chou J (2008) Three-dimensional decomposition method of global atmospheric circulation. Sci China Ser D 51:386–402. doi: 10.1007/s11430-008-0020-9 CrossRefGoogle Scholar
  32. Liu J, Song M, Hu Y, Ren X (2012) Changes in the strength and width of the Hadley circulation since 1871. Clim Past 8:1169–1175. doi: 10.5194/cp-8-1169-2012 CrossRefGoogle Scholar
  33. Lucas C, Nguyen H, Timbal B (2012) An observational analysis of Southern Hemisphere tropical expansion. J Geophys Res 117:D17112. doi: 10.1029/2011JD017033 CrossRefGoogle Scholar
  34. Lucas C, Timbal B, Nguyen H (2014) The expanding tropics: a critical assessment of the observational and modeling studies. Wires Clim Chang 5:89–112. doi: 10.1002/wcc.251 CrossRefGoogle Scholar
  35. Ma J, Li J (2007) Strengthening of the boreal winter Hadley circulation and its connection with ENSO. Prog Nat Sci 17:1327–1333Google Scholar
  36. Ma J, Li J (2008) The principal modes of variability of the boreal winter Hadley cell. Geophys Res Lett 35:L01808. doi: 10.1029/2007gl031883 CrossRefGoogle Scholar
  37. Ma S, Zhou T (2016) Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J Clim 29:3097–3118. doi: 10.1175/jcli-d-15-0398.1 CrossRefGoogle Scholar
  38. Mathew SS, Kumar KK, Subrahmanyam KV (2016) Hadley cell dynamics in Japanese Reanalysis-55 dataset: evaluation using other reanalysis datasets and global radiosonde network observations. Clim Dyn 12:3917–3930. doi: 10.1007/s00382-016-3051-5 CrossRefGoogle Scholar
  39. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Chang 4:888–892. doi: 10.1038/nclimate2330 CrossRefGoogle Scholar
  40. Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi: 10.1029/2004gl021765 CrossRefGoogle Scholar
  41. Mitas CM, Clement A (2006) Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys Res Lett 33:L01810. doi: 10.1029/2005gl024406 CrossRefGoogle Scholar
  42. Nguyen H, Lucas C, Evans A, Timbal B, Hanson L (2015) Expansion of the Southern Hemisphere Hadley cell in response to greenhouse gas forcing. J Clim 28:8067–8077. doi: 10.1175/JCLI-D-15-0139.1 CrossRefGoogle Scholar
  43. Oort AH, Peixóto JP (1983) Global angular momentum and energy balance requirements from observations. Adv Geophys 25:355–490. doi: 10.1016/S0065-2687(08)60177-6 CrossRefGoogle Scholar
  44. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767. doi: 10.1175/1520-0442(1996)009<2751:Oivith>2.0.Co;2 CrossRefGoogle Scholar
  45. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  46. Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55CrossRefGoogle Scholar
  47. Schwendike J, Berry GJ, Reeder MJ, Jakob C, Govekar P, Wardle R (2015) Trends in the local Hadley and local Walker circulations. J Geophys Res 120:7599–7618. doi: 10.1002/2014JD022652 Google Scholar
  48. Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi: 10.1029/2007jd008861 CrossRefGoogle Scholar
  49. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi: 10.1038/ngeo.2007.38 CrossRefGoogle Scholar
  50. Shen J (1994) Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J Sci Comput 15:1425–1438. doi: 10.1137/0915089 CrossRefGoogle Scholar
  51. Shen J, Tang T (2006) Spectral and high-order methods with applications. Science Press, BeijingGoogle Scholar
  52. Sohn BJ, Yeh SW, Schmetz J, Song HJ (2013) Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim Dyn 40:1721–1732. doi: 10.1007/s00382-012-1484-z CrossRefGoogle Scholar
  53. Tao L, Hu Y, Liu J (2015) Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Clim Dyn 46:3337–3350. doi: 10.1007/s00382-015-2772-1 CrossRefGoogle Scholar
  54. Tanaka HL, Ishizaki N, Kitoh A (2004) Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A 56:250–269. doi: 10.3402/tellusa.v56i3.14410 CrossRefGoogle Scholar
  55. Tokinaga H, Xie SP, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443. doi: 10.1038/nature11576 CrossRefGoogle Scholar
  56. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi: 10.1175/JCLI4258.1 CrossRefGoogle Scholar
  57. Wielicki BA et al (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–844. doi: 10.1126/science.1065837 CrossRefGoogle Scholar
  58. Xu M (2001) Study on the three dimensional decomposition of large scale circulation and its dynamical feature. Dissertation, Lanzhou University (in Chinese) Google Scholar
  59. Zhang L, Li T (2017) Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Clim Dyn 48:987–997. doi: 10.1007/s00382-016-3123-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Jianbo Cheng
    • 1
  • Chenbin Gao
    • 1
  • Shujuan Hu
    • 1
  • Guolin Feng
    • 2
  1. 1.Key Laboratory of Semi-Arid Climate Change of Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations