Compound summer temperature and precipitation extremes over central Europe

Original Paper


Reliable knowledge of the near-future climate change signal of extremes is important for adaptation and mitigation strategies. Especially compound extremes, like heat and drought occurring simultaneously, may have a greater impact on society than their univariate counterparts and have recently become an active field of study. In this paper, we use a 12-member ensemble of high-resolution (7 km) regional climate simulations with the regional climate model COSMO-CLM over central Europe to analyze the climate change signal and its uncertainty for compound heat and drought extremes in summer by two different measures: one describing absolute (i.e., number of exceedances of absolute thresholds like hot days), the other relative (i.e., number of exceedances of time series intrinsic thresholds) compound extreme events. Changes are assessed between a reference period (1971–2000) and a projection period (2021–2050). Our findings show an increase in the number of absolute compound events for the whole investigation area. The change signal of relative extremes is more region-dependent, but there is a strong signal change in the southern and eastern parts of Germany and the neighboring countries. Especially the Czech Republic shows strong change in absolute and relative extreme events.


Compound events Drought EDI Ensemble Heat extremes Regional climate modeling 


  1. AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41(24):8847–8852CrossRefGoogle Scholar
  2. Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Wardlow BD, Flather CH, Culbert PD and Radeloff VC (2010) Combined effects of heat waves and droughts on avian communities across the conterminous United States Ecosphere 1 art12Google Scholar
  3. Beniston M (2009) Trends in joint quantiles of temperature and precipitation in europe since 1901 and projected for 2100. Geophys Res Lett 36(7):L07707. doi:10.1029/2008GL037119 CrossRefGoogle Scholar
  4. Berg P, Feldmann H, Panitz HJ (2012) Bias correction of high resolution regional climate model data. J of Hydrol 448:80–92. doi:10.1016/j.jhydrol CrossRefGoogle Scholar
  5. Berg P, Wagner S, Kunstmann H, Schädler G (2013) High resolution regional climate model simulations for Germany: part I—validation. Clim Dyn 40:401–414CrossRefGoogle Scholar
  6. Byun H-R, Wilhite DA (1999) Objective quantification of drought severity and duration. J Clim 12:2747–2756CrossRefGoogle Scholar
  7. Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes C, Jones C, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an earth-system model—HadGEM2. Geosc Model Devel Disc 4(2):997–1062CrossRefGoogle Scholar
  8. Doms G, Schättler U (2002) A description of the nonhydrostatic regional model LM, part I: dynamics and numerics. Consortium for small-scale modelling. Deutscher Wetterdienst, OffenbachGoogle Scholar
  9. Durante F, Salvadori G (2010) On the construction of multivariate extreme value models via copulas. Environmetrics 21(2):143–161. doi:10.1002/env.988 Google Scholar
  10. Feldmann H, Schädler G, Panitz HJ, Kottmeier C (2012) Near future changes of extreme precipitation over complex terrain in Central Europe derived from high resolution RCM ensemble simulations. Int J Clim 33:1964–1977CrossRefGoogle Scholar
  11. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  12. Gallant AJ, Karoly DJ, Gleason KL (2014) Consistent trends in a modified climate extremes index in the United States, Europe, and Australia. J Clim 27(4):1379–1394CrossRefGoogle Scholar
  13. Hao Z, AghaKouchak A, Phillips TJ (2013) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett 8(3):034014CrossRefGoogle Scholar
  14. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113. doi:10.1029/2008JD1020
  15. Hazeleger W, Severijns C, Semmler T, Stefanescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano J, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, Van Noije T, Palme T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-earth: a seamless earth system prediction approach in action. Bull of the Amer Meteor Soc 91(10):1357–1363CrossRefGoogle Scholar
  16. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds.). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp 582Google Scholar
  17. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578CrossRefGoogle Scholar
  18. KLIWA (2006) Langzeitverhalten der Starkniederschläge in Baden-Württemberg und Bayern. KLIWA-Berichte Heft 8:94Google Scholar
  19. Mazdiyasni O, AghaKouchak A (2015) Substantial increase in concurrent droughts and heatwaves in the United States. PNAS. doi:10.1073/pnas.1422945112 Google Scholar
  20. Rauthe M, Steiner H, Riediger U, Mazurkiewicz A, Gratzki A (2013) A central European precipitation climatology—part I: generation and validation of a high-resolution gridded daily data set (HYRAS). Meteor Z 22(3):235–256CrossRefGoogle Scholar
  21. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteor Z 17:347–348CrossRefGoogle Scholar
  22. Röckner G, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. Technical report, MPImet/MAD GermanyGoogle Scholar
  23. Sasse R, Schädler G (2013) Generation of regional climate ensembles using atmospheric forcing shifting. Int J Clim. doi:10.1002/joc.3831 Google Scholar
  24. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336CrossRefGoogle Scholar
  25. Schoelzel C, Friederichs P et al (2008) Multivariate non-normally distributed random variables in climate research—introduction to the copula approach. Nonlin Proc Geoph 15(5):761–772CrossRefGoogle Scholar
  26. Scinocca JF, McFarlane NA, Lazare M, Li J, Plummer D (2008) The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem and Phys 8:7055–7074CrossRefGoogle Scholar
  27. Sedlmeier K (2015) Near future changes of compound extreme events from an ensemble of regional climate simulations. Dissertation, KIT, Karlsruhe.
  28. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst. doi:10.1002/jame.20015 Google Scholar
  29. Tencer B, Weaver A, Zwiers F (2014) Joint occurrence of daily temperature and precipitation extreme events over Canada*. J Appl Meteorol Climatol 53(9):2148–2162CrossRefGoogle Scholar
  30. Tencer B, Betolli ML, Rusticucci M (2016) Compound temperature and precipitation extreme events in southern South America: associated atmospheric circulation, and simulations by a multi-RCM ensemble. Clim Res. doi:10.3354/cr01396 Google Scholar
  31. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA, National Acad Sciences 102:8245–8250CrossRefGoogle Scholar
  32. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  33. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2011) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y Google Scholar
  34. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  35. Zolina O, Simmer C, Kapala A, Bachner S, Gulev SK, Maechel H (2008) Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J Geophys Res 113:1–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Institute of Meteorology and Climate ResearchKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland

Personalised recommendations