Theoretical and Applied Climatology

, Volume 131, Issue 3–4, pp 1503–1515 | Cite as

Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

  • Junqiang Yao
  • Yaning Chen
  • Yong Zhao
  • Weiyi Mao
  • Xinbing Xu
  • Yang Liu
  • Qing Yang
Original Paper


Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981–1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998–2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature (Tnav), it correlates negatively with the number of warmest night days (Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.



The authors wish to thank the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group for producing and sharing the AVHRR GIMMS NDVI3g dataset. We also are grateful to the National Climate Central, China Meteorological Administration, for providing the meteorological data for this study. This work was supported in part by the Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM201506), China Postdoctoral Science Foundation (2016M592915XB), and the National Natural Science Foundation of China (41605067, 41375101, and U1503181).


  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Food and Agric Org Rome 300(9):D05109Google Scholar
  2. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  3. Cao XM, Chan X, Bao AM, Wang Q (2011) Response of vegetation to temperature and precipitation in Xinjiang during the period of 1998–2009. J Arid Land 3(2):92–134CrossRefGoogle Scholar
  4. Chen Y, Deng H, Li B, Li Z, Xu C (2014) Abrupt change of temperature and precipitation extremes in the arid region of northwest China. Quat Int 336:35–43CrossRefGoogle Scholar
  5. Chen Y, Li Z, Fan Y, Wang H, Deng H (2015) Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ Res 139:11–19. doi: 10.1016/j.envres.2014.12.029 CrossRefGoogle Scholar
  6. Coops NC, Ferster CJ, Waring RH, Nightingale J (2009) Comparison of three models for predicting gross primary production across and within forested ecoregions in the contiguous United States. Remote Sens Environ 113(3):680–690CrossRefGoogle Scholar
  7. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res 118(5):2098–2118Google Scholar
  8. Donohue RJ, Roderick ML, McVicar TR (2012) Roots, storms and soil pores: incorporating key ecohydrological processes into Budyko’s hydrological model. J Hydrol 436:35–50CrossRefGoogle Scholar
  9. Eastman JR, Sangermano F, Machado EA, Rogan J, Anyamba A (2013) Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens 5(10):4799–4818CrossRefGoogle Scholar
  10. Fang S, Yan J, Che M, Zhu Y, Liu Z, Pei H, Lin X (2013) Climate change and the ecological responses in Xinjiang, China: model simulations and data analyses. Quat Int 311:108–116CrossRefGoogle Scholar
  11. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang. doi: 10.1038/NCLIMATE2617 Google Scholar
  12. Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi: 10.1016/j.rse.2012.01.017 CrossRefGoogle Scholar
  13. Fensholt R, Rasmussen K, Nielsen TT, Mbow C (2009) Evaluation of earth observation based long term vegetation trends—intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOTVGT data. Remote Sens Environ 113(9):1886–1898CrossRefGoogle Scholar
  14. Gu L et al (2008) The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 58:253–262CrossRefGoogle Scholar
  15. Guo N, Zhu YJ, Wang JM, Deng CP (2008) The relationship between NDVI and climate element for 22 years in different vegetation areas of northwest China. J Plant Ecol 32(2):319–327 (In Chinese)Google Scholar
  16. Gomez-Mendoza L, Galicia L, Cuevas-Fernandez ML, Magana V, Gomez G, Palacio-Prieto JL (2008) Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships. Int J Biometeorol 52(6):511–520. doi: 10.1007/s00484-008-0147-6 CrossRefGoogle Scholar
  17. Griffin KL et al (2002) Leaf respiration is differentially affected by leaf vs. stand-level night-time warming. Glob. Change Biol 8:479–485CrossRefGoogle Scholar
  18. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109:E2415–E2423CrossRefGoogle Scholar
  19. IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the Intergovernmental Panel on Climate Change, edited by Stocker T et al., Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  20. Kim Y, Kimball JS, Zhang K, McDonald KC (2012) Satellite detection of increasing northern hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 121:472–487CrossRefGoogle Scholar
  21. Li BF, Chen YN, Chen ZS, Li WH (2012b) Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quat Int 282:87–95CrossRefGoogle Scholar
  22. Li B, Chen Y, Shi X (2012a) Why does the temperature rise faster in the arid region of northwest China? J Geophys Res 117:D16115. doi: 10.1029/2012JD017953 Google Scholar
  23. Li B, Tao S, Dawson RW (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. INT J Rem Sens 23(5):989–999CrossRefGoogle Scholar
  24. Li QH, Chen YN, Shen YJ, Li XG, Xu JH (2011) Spatial and temporal trends of climate change in Xinjiang, China. J Geogr Sci 21(6):1007–1018CrossRefGoogle Scholar
  25. Li Z, Chen YN, Shen YJ, Liu YB, Zhang SH (2013) Analysis of changing pan evaporation in the arid region of northwest China. Water Resour Res 49(4):2205–2212CrossRefGoogle Scholar
  26. Li Z, Chen Y, Li W, Deng H, Fang G (2015) Potential impacts of climate change on vegetation dynamics in Central Asia. J Geophys Res Atmos 120:12, 345–112,356. doi: 10.1002/2015JD023618 CrossRefGoogle Scholar
  27. Li XB, Shi PJ (2000) Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica 24(3):379–382Google Scholar
  28. Li XH, Shi QD, Guo J, Bayindala CSL, Qi JG (2009) The response of NDVI to climate variability in northwest arid of China from 1981 to 2001. J Arid Land Res Environ 23(2):12–16 (In Chinese)Google Scholar
  29. Mu SJ, Yang HF, Li JL, Chen YZ, Gang CC, Zhou W, Ju WM (2013) Spatiotemporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J Geogr Sci 23(2):231–246CrossRefGoogle Scholar
  30. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  31. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5626): 1560–1563Google Scholar
  32. Peng S, Piao S, Ciais P, Myneni RB, Chen A, Chevallier F et al (2013) Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 501(7465):88–92CrossRefGoogle Scholar
  33. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714CrossRefGoogle Scholar
  34. Pinzon JE, Tucker CJ (2014) A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens 6(8):6929–6960CrossRefGoogle Scholar
  35. Piao SL, Mohammat A, Fang JY, Cai Q, Feng JM (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Chang 16:340–348CrossRefGoogle Scholar
  36. Piao SL, Fang JY, Zhou LLM, Guo QH, Henderson M, Ji W, Li Y, Tao S (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res D 108(14):1–13Google Scholar
  37. Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q et al (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. doi: 10.1038/ncomms7911 CrossRefGoogle Scholar
  38. Prasad PVV, Pisipati SR, Ristic Z, Bukovnik U, Fritz AK (2008) Impact of night-time temperature on physiology and growth of spring wheat. Crop Sci 48:2372–2380CrossRefGoogle Scholar
  39. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci U S A 108:17905–17909CrossRefGoogle Scholar
  40. Roerink GJ, Menenti M, Soepboer W, Su Z (2003) Assessment of climate impact on vegetation dynamics by using remote sensing. Phys Chem Earth 28:103–109. doi: 10.1016/S1474-7065(03)00011-1 CrossRefGoogle Scholar
  41. Schmidt M, Klein D, Conrad C, Dech S, Paeth H (2014) On the relationship between vegetation and climate in tropical and northern Africa. Theor Appl Climatol 115:341–353CrossRefGoogle Scholar
  42. Shen M, Piao S, Jeong SJ, Zhou L, Zeng Z, Ciais P, Cheng DL, Huang M, Jin C, Li L Z, Li Y, Myneni R B, Yang K, Zhang GX, Zhang YJ, Yao TD (2015) Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci 112(30): 9299-9304Google Scholar
  43. Shi YF, Shen YP, Hu RJ (2002) Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. J Glaciol Geocryol 24(3):219–226Google Scholar
  44. Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007) Recent and future climate change in northwest China. Clim Chang 80(3–4):379–393CrossRefGoogle Scholar
  45. Shi Y, Shen Y, Li D, Zhang G, Ding Y, Hu R, Kang E (2003) Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quaternary Sciences 23(2):152–164Google Scholar
  46. Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of day-time and night-time warming on photosynthetic capacity in Populus deltoides. Plant Cell Environ 25:1729–1737CrossRefGoogle Scholar
  47. Wan S, Xia J, Liu W, Niu S (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90:2700–2710CrossRefGoogle Scholar
  48. Wang JS, Chen FH, Zhang GQ (2008) Temperature variations in arid and semi-arid areas in middle part of Asia during the last 100 years. Plateau Meteorol 27(5):1035–1045 (in Chinese)Google Scholar
  49. Wang Y, Shen Y, Chen Y, Guo Y (2013) Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 6(6):927–936Google Scholar
  50. Wang J, Dong J, Liu J, Huang M, Li G, Running SW et al (2014a) Comparison of gross primary productivity derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia. Remote Sens 6(3):2108–2133CrossRefGoogle Scholar
  51. Wang YF, Shen YJ, Sun FB, Chen YN (2014b) Evaluating the vegetation growing season changes in the arid region of northwestern China. Theor Appl Climatol 118(3):569–579CrossRefGoogle Scholar
  52. Wu M, Chen Y, Wang H, Sun G (2015) Characteristics of meteorological disasters and their impacts on the agricultural ecosystems in the northwest of China: a case study in Xinjiang. Geoenvironmental Disasters 2(1):1–10CrossRefGoogle Scholar
  53. Xu C, Chen Y, Yang Y, Hao X, Shen Y (2010) Hydrology and water resources variation and its response to regional climate change in Xinjiang. J Geogr Sci 20(4):599–612CrossRefGoogle Scholar
  54. Xu ZX, Chen YN, Li JY (2004) Impact of climate change on water resources in the Tarim River basin. Water Resour Manag 18:439–458CrossRefGoogle Scholar
  55. Xu Y, Yang J, Chen Y (2015) NDVI-based vegetation responses to climate change in an arid area of China. Theor Appl Climatol. doi: 10.1007/s00704-015-1572-1 Google Scholar
  56. Yao J, Chen Y (2015) Trend analysis of temperature and precipitation in the Syr Darya Basin in Central Asia. Theor Appl Climatol 120(3–4):521–531CrossRefGoogle Scholar
  57. Yang D, Sun F, Liu Z, Cong Z, Lei Z (2006) Interpreting the complementary relationship in nonhumid environments based on the Budyko and Penman hypotheses. Geophys Res Lett 33:L18402. doi: 10.1029/2006GL027657 Google Scholar
  58. Yang D, Sun F, Liu Z, Cong Z, Ni G, Lei Z (2007) Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resour Res 43:W04426. doi: 10.1029/2006 WR005224 Google Scholar
  59. Yang Y, Xu JH, Hong YL, Lv GH (2012) The dynamic of vegetation coverage and its response to climate factors in Inner Mongolia, China. Stoch Environ Res Risk Assess 26:357–373CrossRefGoogle Scholar
  60. Zeng FW, Collatz GJ, Pinzon JE, Ivanoff A (2013) Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales. Remote Sens 5(8):3918–3950CrossRefGoogle Scholar
  61. Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani RR, Myneni RB (2013) Global data sets of vegetation leaf area index (LAI) 3 g and fraction of photosynthetically active radiation (FPAR) 3 g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens 5(2):927–948CrossRefGoogle Scholar
  62. Zhao Y, Yu Z, Chen F (2009) Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. Quat Int 194(1):6–18CrossRefGoogle Scholar
  63. Zhao L, Yang Q, Han XY (2014) Spatial and temporal differences of extreme precipitation during 1961-2009 in Xinjiang, China. J Desert Res 34(2):550–557 (In Chinese)Google Scholar
  64. Zhang Q, Li J, Singh VP, Bai Y (2012) SPI-based evaluation of drought events in Xinjiang, China. Nat Hazards 64(1):481–492CrossRefGoogle Scholar
  65. Zhang XY, Goldberg M, Tarpley D, Friedl MA, Morisette J, Kogan F, Yu YY (2010) Drought-induced vegetation stress in southwestern North America. Environ Res Lett 5:024008. doi: 10.1088/1748-9326/5/2/024008 CrossRefGoogle Scholar
  66. Zhao X, Tan K, Zhao S, Fang J (2011) Changing climate affects vegetation growth in the arid region of the northwestern China. J Arid Environ 75(10):946–952. doi: 10.1016/j.jaridenv.2011.05.007 CrossRefGoogle Scholar
  67. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres (1984–2012) 106(D17):20069–20083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Junqiang Yao
    • 1
  • Yaning Chen
    • 2
  • Yong Zhao
    • 3
  • Weiyi Mao
    • 1
  • Xinbing Xu
    • 4
    • 5
  • Yang Liu
    • 6
  • Qing Yang
    • 1
  1. 1.Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
  2. 2.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
  3. 3.School of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
  4. 4.Xinjiang Normal UniversityUrumqiChina
  5. 5.College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  6. 6.College of Resources and Environment Sciences, Key Laboratory of Oasis Ecology of Ministry of EducationXinjiang UniversityUrumqiChina

Personalised recommendations