Theoretical and Applied Climatology

, Volume 131, Issue 3–4, pp 1133–1146 | Cite as

Drivers of long-term precipitation and runoff variability in the southeastern USA

  • Johanna EngströmEmail author
  • Peter Waylen
Original Paper


The hydroclimatology of the southeastern USA (AL, GA, NC, SC, and TN) is analyzed from a holistic perspective, including multiple climate drivers. Monthly precipitation modeled by the PRISM group and runoff data (1952–2011) from 18 basins are analyzed using a single-field based principal component’s analysis. Results indicate that the Atlantic Multidecadal Oscillation and El Niño-Southern Oscillation are the main atmospheric drivers of hydroclimate variability in the region, sometimes operating at several months’ lag. Their influence is the strongest in the fall through spring, which corresponds with the dry season in the southern parts of the study area thereby increasing pressure on already limited water resources. The Arctic Oscillation, North Atlantic Oscillation, and Pacific-North American patterns vary on shorter-term bases, and also show a significant, but temporally more sporadic influence. Insight is also brought to the ongoing discussion, confirming the disassociation of the Arctic and North Atlantic Oscillation. Findings can be used in water resources forecasting, giving an indication of expected water volumes several months ahead.


  1. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. doi: 10.1175/1520-2.0.CO;2 CrossRefGoogle Scholar
  2. Bonan G (2008) Ecological climatology: concepts and applications. Cambridge University Press, Cambridge, p 550CrossRefGoogle Scholar
  3. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate 5(6):541–560. doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2 CrossRefGoogle Scholar
  4. Brun J, Barros AP (2014) Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int J Climatol 34(2):494–517. doi: 10.1002/joc.3703 CrossRefGoogle Scholar
  5. Carmona AM, Sivapalan M, Yaeger MA, Poveda G (2014) Regional patterns of interannual variability of catchment waterbalances across the continental U.S.: a Budyko framework. Water Resour Res 50:9177–9193. doi: 10.1002/2014WR016013 CrossRefGoogle Scholar
  6. Ciancarelli B, Castro CL, Woodhouse C, Dominguez F, Chang HI, Carrillo C, Griffin D (2014) Dominant patterns of US warm season precipitation variability in a fine resolution observational record, with focus on the southwest. Int J Climatol 34(3):687–707. doi: 10.1002/joc.3716 CrossRefGoogle Scholar
  7. Coleman JS, Budikova D (2013) Eastern US summer streamflow during extreme phases of the North Atlantic oscillation. Journal of Geophysical Research: Atmospheres 118(10):4181–4193. doi: 10.1002/jgrd.50326 Google Scholar
  8. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158. doi: 10.1175/1520 0450(1994)033<0140:ASTMFM>2.0.CO;2 CrossRefGoogle Scholar
  9. Deser C (2000) On the teleconnectivity of the “Arctic Oscillation”. Geophys Res Lett 27(6):779–782. doi: 10.1029/1999GL010945 CrossRefGoogle Scholar
  10. Dracup JA, Kahya E (1994) The relationships between US streamflow and La Niña events. Water Resour Res 30(7):2133–2141. doi: 10.1029/94WR00751 CrossRefGoogle Scholar
  11. Elsner JB (2003) Tracking hurricanes. Bull Am Meteorol Soc 84(3):353–356. doi: 10.1175/BAMS-84-3-353 CrossRefGoogle Scholar
  12. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  13. Engström J, Uvo CB (2015) Effect of northern hemisphere teleconnections on the hydropower production in southern Sweden. J Water Resour Plan Manag 142(2). doi: 10.1061/(ASCE) WR.1943-5452.0000595
  14. Feldstein SB, Franzke C (2006) Are the North Atlantic oscillation and the northern annular mode distinguishable? J Atmos Sci 63(11):2915–2930. doi: 10.1175/JAS3798.1 CrossRefGoogle Scholar
  15. Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: el Nino and 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112(9):1649–1668. doi: 10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2 CrossRefGoogle Scholar
  16. Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophysical Research Letters 37(13). doi: 10.1029/2010GL043712
  17. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479. doi: 10.1126/science.1060040 CrossRefGoogle Scholar
  18. Hamlet AF, Huppert D, Lettenmaier DP (2002) Economic value of long-lead streamflow forecasts for Columbia River hydropower. J Water Resour Plan Manag 128(2):91–101. doi: 10.1061/(ASCE)0733-9496(2002)128:2(91) CrossRefGoogle Scholar
  19. Hamlet AF, Mote PW, Clark MP, Lettenmaier DP (2005) Effects of temperature and precipitation variability on snowpack trends in the western United States. J Clim 18(21):4545–4561. doi: 10.1175/JCLI3538.1 CrossRefGoogle Scholar
  20. Hastenrath SL (1990) Diagnostics and prediction of anomalous river discharge in northern South America. J Clim 3(10):1080–1096. doi: 10.1175/1520-0442(1990)003<1080:DAPOAR>2.0.CO;2 CrossRefGoogle Scholar
  21. Higgins RW, Leetmaa A, Xue Y, Barnston A (2000) Dominant factors influencing the seasonal predictability of US precipitation and surface air temperature. J Clim 13(22):3994–4017. doi: 10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2 CrossRefGoogle Scholar
  22. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  23. Johnson NT, Martinez CJ, Kiker GA, Leitman S (2013) Pacific and Atlantic sea surface temperature influences on streamflow in the Apalachicola–Chattahoochee–Flint river basin. J Hydrol 489:160–179. doi: 10.1016/j.jhydrol.2013.03.005 CrossRefGoogle Scholar
  24. Kahya E, Dracup JA (1993) US streamflow patterns in relation to the el Niño/southern oscillation. Water Resour Res 29(8):2491–2503. doi: 10.1029/93WR00744 CrossRefGoogle Scholar
  25. Kang DH, Gao H, Shi X, Ul Islam S, Déry SJ (2016) Impacts of a rapidly declining mountain snowpack on streamflow timing in Canada’s Fraser River basin. Scientific Reports 6. doi: 10.1038/srep19299
  26. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856-1991. J Geophys Res 103(18):567–518. doi: 10.1029/97JC01736 Google Scholar
  27. Katz RW, Parlange MB, Tebaldi C (2003) Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern US. Climatic Change 60(1-2):189–216. doi: 10.1023/A:1026054330406 CrossRefGoogle Scholar
  28. Kennedy AM, Garen DC, Koch RW (2009) The association between climate teleconnection indices and upper Klamath seasonal streamflow: Trans-Niño Index. Hydrol Process 23(7):973–984. doi: 10.1002/hyp.7200 CrossRefGoogle Scholar
  29. Kunkel KE, Stevens LE, Stevens SE, Sun L, Janssen E, Weubbles D, Konrad CE, Fuhrmann CM, Keim BD, Kruk MC, Billot A, Needham H, Shafer M, Dobson JG (2013) Regional Climate Trends and Scenarios for the United States National Climate Assessment. Part 2: Climate of the Southeast United States. NOAA Technical Report NESDIS 142–2.Google Scholar
  30. Labosier CF, Quiring SM (2013) Hydroclimatology of the southeastern USA. Clim Res 57(2):157–171. doi: 10.3354/cr01166 CrossRefGoogle Scholar
  31. Latysh NE, Wetherbee GA (2012) Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets. Environ Monit Assess 184(2):913–928. doi: 10.1007/s10661-011-2009-7 CrossRefGoogle Scholar
  32. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. scientific reports No. 1, Statistical Forecasting Project, MIT, Cambridge, MA, p 48Google Scholar
  33. Nag B, Misra V, Bastola S (2014) Validating ENSO teleconnections on southeastern US winter hydrology. Earth Interactions 18(15):1–23. doi: 10.1175/EI-D-14-0007.1 CrossRefGoogle Scholar
  34. National Oceanographic and Atmospheric Administration (2002) Kaplan Extended SST V2. Accessed July 9, 2015
  35. National Oceanographic and Atmospheric Administration (2005) Teleconnection Pattern Calculation Procedures. Accessed July 7, 2015
  36. National Oceanographic and Atmospheric Administration, 2013a: Monthly teleconnection index: North Atlantic Oscillation (NAO). Accessed November 1st, 2013
  37. National Oceanographic and Atmospheric Administration, (2013b): Monthly teleconnection index: Pacific/North American (PNA) Pattern. Accessed November 1st, 2013
  38. National Hydropower Association (2013) Hydropower benefits every U.S. state. Accessed October 7th, 2013
  39. Ortegren JT, Knapp PA, Maxwell JT, Tyminski WP, Soulé PT (2011) Ocean-atmosphere influences on low-frequency warm-season drought variability in the Gulf coast and southeastern United States. J Appl Meteorol Climatol 50(6):1177–1186. doi: 10.1175/2010JAMC2566.1 CrossRefGoogle Scholar
  40. Ortegren JT, Weatherall A, Maxwell JT (2014) Subregionalization of low-frequency summer drought variability in the southeastern United States. Prof Geogr 66(2):323–332. doi: 10.1080/00330124.2013.787008 CrossRefGoogle Scholar
  41. Peel MC, McMahon TA, Finlayson BL (2010) Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour Res 46(9). doi: 10.1029/2009WR008233
  42. Rice JS, Emanuel RE, Vose JM, Nelson SA (2015) Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics. Water Resources Research 51(8):6262–6275. doi: 10.1002/2014WR016367 CrossRefGoogle Scholar
  43. Rogers JC (1984) The association between the North Atlantic Oscillation and the Southern Oscillation in the northern hemisphere. Monthly Weather Review 112(10):1999–2015. doi: 10.1175/1520-0493(1984)112<1999:TABTNA>2.0.CO;2 CrossRefGoogle Scholar
  44. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the el Niño/southern oscillation (ENSO). Mon Weather Rev 114(12):2352–2362. doi: 10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2 CrossRefGoogle Scholar
  45. Sen AK (2012) Streamflow variability in the southern Appalachians and atmospheric teleconnections. River Res Appl 28(5):630–636. doi: 10.1002/rra.1473 CrossRefGoogle Scholar
  46. Serreze MC, Clark MP, McGinnis DL, Robinson DA (1998) Characteristics of snowfall over the eastern half of the United States and relationships with principal modes of low-frequency atmospheric variability. J Clim 11:234–250. doi: 10.1175/1520-0442(1998)011<0234:COSOTE>2.0.CO; CrossRefGoogle Scholar
  47. Slack JR, Lumb AM, Landwehr JM (1993) Hydroclimatic Data Network (HCDN). A United States Geological Survey Streamflow Data Set for the United States for the study of climatic variation, 1874–1988. Water Resources Investigations Report 93–4076, U.S. Geological Survey, Washington, DC.Google Scholar
  48. Smith CA, Sardeshmukh PD (2000) The effect of ENSO on the intraseasonal variance of surface temperatures in winter. Int J Climatol 20(13):1543–1557. doi: 10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A CrossRefGoogle Scholar
  49. Su H, Neelin JD, Meyerson JE (2005) Mechanisms for lagged atmospheric response to ENSO SST forcing*. J Clim 18(20):4195–4215. doi: 10.1175/JCLI3514.1 CrossRefGoogle Scholar
  50. Thompson DW, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300. doi: 10.1029/98GL00950 CrossRefGoogle Scholar
  51. Thompson DW, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293(5527):85–89. doi: 10.1126/science.1058958 CrossRefGoogle Scholar
  52. United States Geological Survey 2013: Daily Data for USA: Streamflow Accessed December 6th, 2013
  53. Vanrheenen NT, Wood AW, Palmer RN, Lettenmaier DP (2004) Potential implications of PCM climate change scenarios for Sacramento-San Joaquin river basin hydrology and water resources. Clim Chang 62:257–281. doi: 10.1023/B:CLIM.0000013686.97342.55 CrossRefGoogle Scholar
  54. Walker GT, Bliss EW (1932) World weather. V. Mem. Roy. Meteor. Soc. 4:53–84Google Scholar
  55. Wallace JM (2000) North Atlantic Oscillation/annular mode: Two paradigms-one phenomenon. Quarterly. Journal of the Royal Meteorological Society 126(564):791–806. doi: 10.1002/qj.49712656402 CrossRefGoogle Scholar
  56. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 CrossRefGoogle Scholar
  57. Wilks DS (2011). Statistical methods in the atmospheric sciences. Academic Press, Oxford Vol. 100.Google Scholar
  58. Xie L, Yan T, Pietrafesa LJ, Morrison JM, Karl T (2005) Climatology and interannual variability of North Atlantic hurricane tracks. J Clim 18(24):5370–5381. doi: 10.1175/JCLI3560.1 CrossRefGoogle Scholar
  59. Yang X, DelSole T (2012) Systematic comparison of ENSO teleconnection patterns between models and observations. J Clim 25(2):425–446. doi: 10.1175/JCLI-D-11-00175.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of GeographyUniversity of FloridaGainesvilleUSA

Personalised recommendations