Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 793–803 | Cite as

Climate change trends, grape production, and potential alcohol concentration in wine from the “Romagna Sangiovese” appellation area (Italy)

  • Nemanja TeslićEmail author
  • Giordano Zinzani
  • Giuseppina P. Parpinello
  • Andrea Versari
Original Paper

Abstract

The trend of climate change and its effect on grape production and wine composition was evaluated using a real case study of seven wineries located in the “Romagna Sangiovese” appellation area (northern Italy), one of the most important wine producing region of Italy. This preliminary study focused on three key aspects: (i) Assessment of climate change trends by calculating bioclimatic indices over the last 61 years (from 1953 to 2013) in the Romagna Sangiovese area: significant increasing trends were found for the maximum, mean, and minimum daily temperatures, while a decreasing trend was found for precipitation during the growing season period (April–October). Mean growing season temperature was 18.49 °C, considered as warm days in the Romagna Sangiovese area and optimal for vegetative growth of Sangiovese, while nights during the ripening months were cold (13.66 °C). The rise of temperature shifted studied area from the temperate/warm temperate to the warm temperate-/warm grape-growing region (according to the Huglin classification). (ii) Relation between the potential alcohol content from seven wineries and the climate change from 2001 to 2012: dry spell index (DSI) and Huglin index (HI) suggested a large contribution to increasing level of potential alcohol in Sangiovese wines, whereas DSI showed higher correlation with potential alcohol respect to the HI. (iii) Relation between grape production and the climate change from 1982 to 2012: a significant increasing trend was found with little effect of the climate change trends estimated with used bioclimatic indices. Practical implication at viticultural and oenological levels is discussed.

Notes

Acknowledgements

The authors acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) the data providers in the ECA and D project (http://www.ecad.eu). The authors also acknowledge Editor Alessandro Masnaghetti for giving permission to use a map in the article and architect Marta Martins for her contribution.

Supplementary material

704_2016_2005_MOESM1_ESM.pdf (184 kb)
ESM 1 (PDF 183 kb)
704_2016_2005_MOESM2_ESM.pdf (6.9 mb)
Fig. S1 (PDF 7052 kb)
704_2016_2005_MOESM3_ESM.pdf (4 kb)
Table S1 (PDF 3 kb)
704_2016_2005_MOESM4_ESM.pdf (560 kb)
Table S2 (PDF 560 kb)

References

  1. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15:1–8. doi: 10.1002/asl2.485 CrossRefGoogle Scholar
  2. Antolini G, Auteri L, Pavan V, Tomei F, Tomozeiu R, Marlettoa V (2016) A daily high-resolution gridded climatic data set for Emilia-Romagna, Italy, during 1961–2010. Int J Climatol 36:1970–1986. doi: 10.1002/joc.4473 CrossRefGoogle Scholar
  3. Barbeau G (2007) Climat et vigne en moyenne vallée de la Loire, France. Congress on climate viticulture, 10–14 April, Zaragosa, Spain, p. 96–101Google Scholar
  4. Bardin-Camparotto L, Blain GC, Júnior MJP, Hernandes JL, Cia P (2014) Climate trends in a non-traditional high quality wine producing region. Bragantia 73:327–334. doi: 10.1590/1678-4499.0127 CrossRefGoogle Scholar
  5. Battaglini A, Barbeau G, Bindi M, Badeck FW (2009) European winegrowers perceptions of climate ‘change impact and options for adaptation. Reg Environ Chang 9:61–73. doi: 10.1007/s10113-008-0053-9 CrossRefGoogle Scholar
  6. Bindi M, Fibbi L, Gozzini B, Orlandini S, Seghi L (1996) The effect of elevated CO2 concentration on grapevine growth under field conditions. ISHS Acta Horticulturae 427:325–330. doi: 10.17660/ActaHortic.1996.427.38 CrossRefGoogle Scholar
  7. Bonnefoy C, Quenol H, Bonnardot V, Barbeau G, Madelin M, Planchon O, Neethling E (2013) Temporal spatial analyses of temperature in a French wine-producing area: the Loire valley. Int J Climatol 33:1849–1862. doi: 10.1002/joc.3552 CrossRefGoogle Scholar
  8. Brunetti M, Maugeri M, Nanni T (2000) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174. doi: 10.1007/s007040070041 CrossRefGoogle Scholar
  9. Catarino M, Mendes A (2011) Dealcoholizing wine by membrane separation processes. Innovative Food Science and Emerging Technologies 12:330–337. doi: 10.1016/j.ifset.2011.03.006 CrossRefGoogle Scholar
  10. Coombe BG (1989) The grape berry as a sink. Acta Hortic 239:149–158. doi: 10.17660/ActaHortic.1989.239.20 CrossRefGoogle Scholar
  11. Coulter AD, Henschke PA, Simos CA, Pretorius IS (2008) When the heat is on, yeast fermentation managing director, runs out of puff. Australian New Zeal Wine Industry Journal 23:26–30Google Scholar
  12. Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  13. Duchêne E, Schneider C (2005) Grapevine climatic changes: a glance at the situation in Alsace. Agronomie 25:93–99. doi: 10.1051/agro:2004057 Google Scholar
  14. Fischer U, Noble AC (1994) The effect of ethanol, catechin concentration, and pH on sourness bitterness of wine. Am J Enol Vitic 45:6–10Google Scholar
  15. Fraga H, Malheiro AC, Moutinho-Pereira J, Jones GV, Alves F, Pinto JG, Santos JA (2014a) Very high resolution bioclimatic zoning of portuguese wine regions: present future scenarios. Reg Environ Chang 14:295–306. doi: 10.1007/s10113-013-0490-y CrossRefGoogle Scholar
  16. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2014b) Climate factors driving wine production in the portuguese Minho region. Agric For Meteorol 185:26–36. doi: 10.1016/j.agrformet.2013.11.003 CrossRefGoogle Scholar
  17. Fregoni M (2005) Viticoltura di Qualità. Techiche Nuove, MilanGoogle Scholar
  18. García-Martín N, Perez-Magariño S, Ortega-Heras M, González-Huerta C et al (2010) Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Separation Purification Technology 76:158–170. doi: 10.1016/j.seppur.2010.10.002 CrossRefGoogle Scholar
  19. Gil M, Estévez S, Kontoudakis N, Fort F, Canals JM, Zamora F (2013) Influence of partial dealcoholization by reverse osmosis on red wine composition sensory characteristics. European Food Research Technology 237:481–488. doi: 10.1007/s00217-013-2018-6 CrossRefGoogle Scholar
  20. Gladstones J (1992) Viticulture and environment. Winetitles, AdelaideGoogle Scholar
  21. Gladstones J (2011) Wine terroir and climate change. Wakefield Press, Kent TownGoogle Scholar
  22. Hall A, Jones GV (2010) Spatial analysis of climate in winegrape-growing regions in Australia. Australian Journal of Grape Wine Research 16:389–404. doi: 10.1111/j.1755-0238.2010.00100.x CrossRefGoogle Scholar
  23. Hamed KH, Ramachra Rao A (1998) A modified mann-kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi: 10.1016/S0022-1694(97)00125-X CrossRefGoogle Scholar
  24. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci U S A 110:6907–6912. doi: 10.1073/pnas.1210127110 CrossRefGoogle Scholar
  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature precipitation for 1950-2006. Journal of Geophysical Research: Atmospheres 113:1–12. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  26. Holland T, Smit B (2014) Recent climate change in the Prince Edward County winegrowing region, Ontario, Canada: implications for adaptation in a fledgling wine industry. Reg Environ Chang 14:1109–1121. doi: 10.1007/s10113-013-0555-y CrossRefGoogle Scholar
  27. Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In: Symposium International sur l’écologie de la vigne. 1. Ministère de l’Agriculture et de l’Industrie Alimentaire, Constança, p 89–98Google Scholar
  28. IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II, III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 151Google Scholar
  29. Jackson RS (2008) Wine science: principles and applications. Elsevier, New YorkGoogle Scholar
  30. Jackson DI, Lombard PB (1993) Environmental management practices affecting grape composition wine quality—a review. Am J Enol Vitic 44:409–430Google Scholar
  31. Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir–the geoscience perspective. Geological Association of Canada, NewfoundlandGoogle Scholar
  32. Jones GV (2012) Climate, grapes, wine: structure and suitability in a changing climate. Acta Hortic 931:19–28. doi: 10.17660/ActaHortic.2012.931.1 CrossRefGoogle Scholar
  33. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, wine production quality for Bordeaux, France. American Journal of Enology Viticulture 51:249–261Google Scholar
  34. Jones GV, Duchêne E, Tomasi D, Yuste J et al. (2005a) Changes in European wine grape phenology relationships with climate. In: Proceedings of the Groupe d’Etude des Systèmes de Conduite de la vigne (GESCO 2005). Gesellschaft zur Förderung der Forschungsanstalt, Geisenheim, p 23–27Google Scholar
  35. Jones GV, White MA, Cooper OR, Storchmann K (2005b) Climate change and global wine quality. Clim Chang 73:319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  36. Jones GV, Ried R, Vilks A (2010) A climate for wine. In: Dougherty P (ed) The geography of wine. Springer Press, Berlin, pp 109–133Google Scholar
  37. Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69. doi: 10.1111/j.1755-0238.2009.00077.x CrossRefGoogle Scholar
  38. Kendall MG, Stuart A (1967) The advanced theory of statistics. Charles Griffin and Company, LondonGoogle Scholar
  39. Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ (2015) Effects of climate change including elevated CO2 concentration, temperature water deficit on growth, water status, yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manag 159:155–164. doi: 10.1016/j.agwat.2015.06.015 CrossRefGoogle Scholar
  40. Konca-Kedzierska K (2015) Comparison of selected methods of analysis for reconstructed fields of precipitation in climate scenarios over Poland. Theor Appl Climatol. doi: 10.1007/s00704-015-1617-5 Google Scholar
  41. Lereboullet AL, Beltrando G, Bardsley DK, Rouvellac E (2014) The viticultural system and climate change: coping with long-term trends in temperature and rainfall in Roussillon, France. Reg Environ Chang 14:1951–1966. doi: 10.1007/s10113-013-0446-2 CrossRefGoogle Scholar
  42. Lorenzo MN, Taboada JJ, Lorenzo JF, Ramos AM (2012) Influence of climate on grape production and wine quality in the Rías Baixas, North-Western Spain. Reg Environ Chang 13:887–896. doi: 10.1007/s10113-012-0387-1 CrossRefGoogle Scholar
  43. Malheiro AC, Campos R, Fraga H, Eiras-Dias J, Silvestre J, Santos JA (2013) Winegrape phenology temperature relationships in the Lisbon wine region, Portugal. Journal International des Sciences de la Vigne et du Vin 47:287–299Google Scholar
  44. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  45. Männik A, Zirk M, Rõõm R, Luhamaa A (2015) Climate paremeters of Estonia and the Baltic Sea region derived from the high-resolution reanalysis database BaltAn65+. Theor Appl Climatol 122:19–34. doi: 10.1007/s00704-014-1271-3 CrossRefGoogle Scholar
  46. Mariani L, Parisi SG, Cola G, Failla O (2012) Climate change in Europe and effects on thermal resources for crops. Int J Biometeorol 56:1123–1134. doi: 10.1007/s00484-012-0528-8 CrossRefGoogle Scholar
  47. Massot A, Mietton-Peuchot M, Peuchot C, Milisic V (2008) Nanofiltration and reverse osmosis in winemaking. Desalination 231:283–289. doi: 10.1016/j.desal.2007.10.032 CrossRefGoogle Scholar
  48. Mira de Orduña R (2010) Climate change associated effects on grape wine quality production. Food Res Int 43:1844–1185. doi: 10.1016/j.foodres.2010.05.001 CrossRefGoogle Scholar
  49. Moisselin JM, Dubuisson B (2006) Évolution des valeurs extrêmes de température et de précipitations au cours du XXe siècle en France. Meteorologie 54:33–44. doi: 10.4267/2042/20099 Google Scholar
  50. Moutinho-Pereira J, Goncalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological yield attributes. Vitis-Journal of Grapevine Research 48:159–165Google Scholar
  51. Mullins MG, Bouquet A, Williams LE (1992) Biology of horticultural crops: biology of the grapevine. Cambridge University Press, CambridgeGoogle Scholar
  52. Neethling E, Barbeau G, Bonnefoy C, Quénol H (2012) Change in climate berry composition for grapevine varieties cultivated in the Loire valley. Clim Res 53:89–101. doi: 10.3354/cr01094 CrossRefGoogle Scholar
  53. Orlandini S, Di Stefano V, Lucchesini P, Puglisi A, Bartolini G (2009) Current trends of agroclimatic indices applied to grapevine in Tuscany (Central Italy). Idojaras 113:69–78Google Scholar
  54. Pettitt AN (1979) A non-parametric approach to the change point problem. Appl Stat 28:126–135CrossRefGoogle Scholar
  55. Pielke RA, Stohlgren T, Schell L, Parton W et al (2002) Problems in evaluating regional local trends in temperature: an example from eastern Colorado, USA. Int J Climatol 22:421–434. doi: 10.1002/joc.706 CrossRefGoogle Scholar
  56. Poni S, Bernizzoni F, Civardi S (2007) Response of “Sangiovese” grapevines to partial root-zone drying: gas-exchange, growth and grape composition. Sci Hortic 114:96–103. doi: 10.1016/j.scienta.2007.06.003 CrossRefGoogle Scholar
  57. Ramos MC, Martínez-Casasnovas JA (2010) Soil water balance in rainfed vineyards of the Penedès region (northeastern Spain) affected by rainfall characteristics and land levelling: influence on grape yield. Plant Soil 333:375–389. doi: 10.1007/s11104-010-0353-y CrossRefGoogle Scholar
  58. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure trends in climate parameters affecting winegrape production in Northeast Spain. Clim Res 38:1–15. doi: 10.3354/crPAGE00759 CrossRefGoogle Scholar
  59. Santos JA, Malheiro AC, Pinto JG, Jones GV (2012) Macroclimate viticultural zoning in Europe: observed trends atmospheric forcing. Clim Res 51:89–103. doi: 10.3354/cr01056 doi:10.1007/s00484-010-0318-0CrossRefGoogle Scholar
  60. Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-b effects. Aust J Grape Wine Res 6:2–12. doi: 10.1111/j.1755-0238.2000.tb00156.x CrossRefGoogle Scholar
  61. Selianinov GT (1928) On agricultural climate valuation. Procedding of Agricultural Meteorology 20:165–177Google Scholar
  62. Sokolowsky M, Fischer U (2012) Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis. Anal Chim Acta 732:46–52. doi: 10.1016/j.aca.2011.12.024 CrossRefGoogle Scholar
  63. Tonietto J (1999) Les microclimats viticoles mondiaux et l’influence du mesoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France. Disertation, l’Institut National Recherche AgronomiqueGoogle Scholar
  64. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol 124:81–97. doi: 10.1016/j.agrformet.2003.06.001 CrossRefGoogle Scholar
  65. van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, cultivar on terroir. American Journal of Enology Viticulture 55:207–217Google Scholar
  66. van Leeuwen C, Schultz HR, De Cortazar-Atauri IG, Duchêne E et al (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci U S A 110:3051–3052. doi: 10.1073/pnas.1307927110 CrossRefGoogle Scholar
  67. Vidal S, Courcoux P, Francis L, Kwiatkowski M, Gawel R, Williams P et al (2004) Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual Prefer 15:209–217. doi: 10.1016/S0950-3293(03)00059-4 CrossRefGoogle Scholar
  68. Von Storch H, Navarra A (1995) Analysis of climate variability: applications of statistical techniques. Springer Press, BerlinCrossRefGoogle Scholar
  69. Vršič S, Šuštar V, Pulko B, Šumenjak TK (2014) Trends in climate parameters affecting wine grape ripening in northeastern Slovenia. Clim Res 58:257–266. doi: 10.3354/cr01197 CrossRefGoogle Scholar
  70. Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of wine grapes in Australia. Aust J Grape Wine Res 13:165–175. doi: 10.1111/j.1755-0238.2007.tb00247.x CrossRefGoogle Scholar
  71. Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming drying management practices. Nat Clim Chang 2:259–264. doi: 10.1038/nclimate1417 CrossRefGoogle Scholar
  72. Werner PC, Gerstengarbe FW, Fraedrich K, Oesterle H (2000) Recent climate change in the North Atlantic/European sector. Int J Climatol 20:463–471. doi: 10.1002/(SICI)1097-0088(200004)20:5<463::AID-JOC483>3.0.CO;2-T CrossRefGoogle Scholar
  73. Williams AA (1972) Flavour effects of ethanol in alcoholic beverages. The Flavour Industry 3:604–607Google Scholar
  74. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, BerkleyGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Nemanja Teslić
    • 1
    Email author
  • Giordano Zinzani
    • 2
  • Giuseppina P. Parpinello
    • 1
  • Andrea Versari
    • 1
  1. 1.Department of Agricultural and Food SciencesUniversity of BolognaCesenaItaly
  2. 2.CAVIRO SCAFaenzaItaly

Personalised recommendations