Advertisement

Theoretical and Applied Climatology

, Volume 131, Issue 1–2, pp 111–120 | Cite as

Long-lasting floods buffer the thermal regime of the Pampas

  • Javier HouspanossianEmail author
  • Sylvain Kuppel
  • Marcelo Nosetto
  • Carlos Di Bella
  • Patricio Oricchio
  • Mariana Barrucand
  • Matilde Rusticucci
  • Esteban Jobbágy
Original Paper

Abstract

The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

Notes

Acknowledgments

This work was funded by grants from the National Research Council of Argentina (CONICET), the International Research Development Centre [IDRC-Canada, Project 106601-001], ANPCyT [PRH 27 [PICT 2013-2973; PICT 2014-2790], and the Inter-American Institute for Global Change Research [IAI, CRN II 2031], which is supported by the US National Science Foundation[Grant number 448 GEO-0452325]. We thank Dr. Horacio Zagarese from INTECH for the lagoon temperature dataset provided. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

References

  1. Andrade JF, Satorre EH (2015) Single and double crop systems in the Argentine Pampas: environmental determinants of annual grain yield. Field Crop Res 177:137–147. doi: 10.1016/j.fcr.2015.03.008 CrossRefGoogle Scholar
  2. Aragón R, Jobbágy EG, Viglizzo EF (2011) Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology 4:433–447. doi: 10.1002/eco.149 CrossRefGoogle Scholar
  3. Aschmann H (1973) Distribution and peculiarity of Mediterranean ecosystems. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems, vol 7, Studies Springer, vol Ecological. Berlin, Heidelberg, pp. 11–19CrossRefGoogle Scholar
  4. Baldi G, Paruelo JM (2008) Land use and land cover dynamics in South American temperate grasslands. Ecol Soc 13:6CrossRefGoogle Scholar
  5. Baldocchi D et al (2016) The impact of expanding flooded land area on the annual evaporation of rice agricultural and forest. Meteorology 223:181–193. doi: 10.1016/j.agrformet.2016.04.001 Google Scholar
  6. Ballesteros SI (2014) Inundaciones y su relación con el clima y la hidrología subterránea en el Noroeste de Buenos Aires (1980–2010): Aplicación de percepción remota. Universidad de Buenos AiresGoogle Scholar
  7. Biancamaria S, Bates P, Boone A, Mognard N (2009) Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. J Hydrol 379:136–150. doi: 10.1016/j.jhydrol.2009.09.054 CrossRefGoogle Scholar
  8. Eaton AK, Rouse WR, Lafleur PM, Marsh P, Blanken PD (2001) Surface energy balance of the western and central Canadian subarctic: variations in the energy balance among five major terrain types. J Clim 14:3692–3703CrossRefGoogle Scholar
  9. Geiger R (1967) The climate near the ground. Q J R Meteorol Soc 93:150–151. doi: 10.1002/qj.49709339529 Google Scholar
  10. Gu L et al (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262CrossRefGoogle Scholar
  11. Hall AJ, Rebella CM, Ghersa C, Culot J (1992) Field crop systems of the Pampas. In: Pearson CJ (ed) Ecosystems of the world. Field Crop Ecosystems. Elsevier, Amsterdam, pp. 413–450Google Scholar
  12. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major south American floodplains. Journal of Geophysical Research: Atmospheres 107:LBA 5-1–LBA 5-14. doi: 10.1029/2000jd000306 Google Scholar
  13. Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrol Process 18:2103–2116. doi: 10.1002/hyp.5559 CrossRefGoogle Scholar
  14. Higgins CW, Pardyjak E, Froidevaux M, Simeonov V, Parlange MB (2013) Measured and estimated water vapor advection in the atmospheric surface layer. J Hydrometeorol 14:1966–1972. doi: 10.1175/JHM-D-12-0166.1 CrossRefGoogle Scholar
  15. Hillel D (2003) Soil physics and soil physical characteristics. In: introduction to environmental soil physics (first). Academic Press, Burlington, pp. 3–17. doi: 10.1016/B978-012348655-4/50002-2 CrossRefGoogle Scholar
  16. Hinkel KM, Nelson FE (2012) Spatial and temporal aspects of the lake effect on the southern shore of Lake Superior. Theor Appl Climatol 109:415–428. doi: 10.1007/s00704-012-0585-2 CrossRefGoogle Scholar
  17. Hirshhorn J (1952) Las heladas en la República Argentina. Índices Agroclimáticos. Servicio Meteorológico Nacional, Buenos AiresGoogle Scholar
  18. Iriondo MH (1999) The Neogene of the Llanos-Chaco-Pampa Depression Episodes 22:226–231Google Scholar
  19. Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. doi: 10.1046/j.1365-2699.2000.00162.x CrossRefGoogle Scholar
  20. Jobbágy EG, Nosetto MD, Santoni C, Baldi G (2008) El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral 18:305–322Google Scholar
  21. Kopec RJ (1967) Effects of the Great Lakes’ thermal influence on freeze-free dates in spring and fall as determined by Hopkins’ bioclimatic law. Agric Meteorol 4:241–253CrossRefGoogle Scholar
  22. Krinner G (2003) Impact of lakes and wetlands on boreal climate. Journal of Geophysical Research: Atmospheres 108:4520. doi: 10.1029/2002jd002597 CrossRefGoogle Scholar
  23. Kuppel S, Houspanossian J, Nosetto M, Jobbágy E (2015) What does it take to flood the pampas? lessons from a decade of strong hydrological fluctuations. Water Resour Res 51:2937–2950CrossRefGoogle Scholar
  24. Liao X, Liu Z, Wang Y, Jin J (2013) Spatiotemporal variation in the microclimatic edge effect between wetland and farmland. Journal of Geophysical Research Atmospheres 118:7640–7650. doi: 10.1002/jgrd.50573 CrossRefGoogle Scholar
  25. Long Z, Perrie W, Gyakum J, Caya D, Laprise R (2007) Northern lake impacts on local seasonal climate. J Hydrometeorol 8:881–896. doi: 10.1175/JHM591.1 CrossRefGoogle Scholar
  26. Madonni GA (2012) Analysis of the climatic constraints to maize production in the current agricultural region of Argentina—a probabilistic approach. Theor Appl Climatol 107:325–345CrossRefGoogle Scholar
  27. Magliano PN, Fernández RJ, Mercau JL, Jobbágy EG (2015) Precipitation event distribution in Central Argentina: spatial and temporal patterns. Ecohydrology 8:94–104. doi: 10.1002/eco.1491 CrossRefGoogle Scholar
  28. Mallard MS et al (2015) Technical challenges and solutions in representing lakes when using WRF in downscaling applications Geoscientific Model. Development 8:1085–1096. doi: 10.5194/gmd-8-1085-2015 Google Scholar
  29. Moncaut CA (1978) Pampas y Estancias. El Aljibe, City Bell, Bs. As., ArgentinaGoogle Scholar
  30. Moncaut CA (2001) Inundaciones y sequías en la pampa bonaerense vol 1–108. El Aljibe, City Bell, Bs.As., ArgentinaGoogle Scholar
  31. Nicholls JF, Toumi R (2014) On the lake effects of the Caspian Sea Quarterly. J R Meteorol Soc 140:1399–1408. doi: 10.1002/qj.2222 CrossRefGoogle Scholar
  32. Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International J Climatol 20:1823–1841. doi: 10.1002/1097-0088(20001130)20:14<1823::aid-joc566>3.0.co;2-b CrossRefGoogle Scholar
  33. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research: Atmospheres 116:2119. doi: 10.1029/2010jd014542 CrossRefGoogle Scholar
  34. Nosetto MD, Jobbágy EG, Brizuela AB, Jackson RB (2012) The hydrologic consequences of land cover change in Central Argentina agriculture. Ecosystems and Environment 154:2–11CrossRefGoogle Scholar
  35. Oncley SP, Lenschow DH, Campos TL, Davis KJ, Mann J (1997) Regional-scale surface flux observations across the boreal forest during BOREAS. Journal of Geophysical Research: Atmospheres 102:29147–29154. doi: 10.1029/97jd00242 CrossRefGoogle Scholar
  36. Ordóñez RA, Savin R, Cossani CM, Slafer GA (2015) Yield response to heat stress as affected by nitrogen availability in maize. Field Crop Res 183:184–203. doi: 10.1016/j.fcr.2015.07.010 CrossRefGoogle Scholar
  37. Otegui ME, Nicolini MG, Ruiz RA, Dodds PA (1995) Sowing date effects on grain yield components for different maize genotypes. Agro J 87:29–33CrossRefGoogle Scholar
  38. Rouse WR et al (2005) The role of northern lakes in a regional energy balance. J Hydrometeorol 6:291–305. doi: 10.1175/jhm421.1 CrossRefGoogle Scholar
  39. Samuelsson P, Kourzeneva E, Mironov D (2010) The impact of lakes on the European climate as stimulated by a regional climate model. Boreal Environ Res 15:113–119Google Scholar
  40. Scott RW, Huff FA (1996) Impacts of the Great Lakes on regional climate conditions. J Great Lakes Res 22:845–863CrossRefGoogle Scholar
  41. Soriano A (1992) Rio de la Plata grasslands Natural grasslands:367–407Google Scholar
  42. Subin ZM, Murphy LN, Li F, Bonfils C, Riley WJ (2012) Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: aAnalyses in the Community Earth System Model 1 (CESM1). Tellus Ser A Dyn Meteorol Oceanogr 64:1–21. doi: 10.3402/tellusa.v64i0.15639 CrossRefGoogle Scholar
  43. Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213:946–954. doi: 10.1242/jeb.037564 CrossRefGoogle Scholar
  44. Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5:1–7. doi: 10.1186/1756-3305-5-100 CrossRefGoogle Scholar
  45. Venäläinen A, Frech M, Heikinheimo M, Grelle A (1999) Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agric For Meteorol 98-99:535–546. doi: 10.1016/s0168-1923(99)00100-8 CrossRefGoogle Scholar
  46. Viglizzo EF, Jobbágy EG, Carreño LV, Frank FC, Aragón RM, De Oro L, Salvador VS (2009) The dynamics of cultivation and floods in arable lands of Central Argentina. Hydrol Earth Syst Sci 13:491–502CrossRefGoogle Scholar
  47. Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens Environ 112:623–635. doi: 10.1016/j.rse.2007.05.024 CrossRefGoogle Scholar
  48. Wang W et al (2014) Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J Hydrol 511:811–824. doi: 10.1016/j.jhydrol.2014.02.012 CrossRefGoogle Scholar
  49. West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144. doi: 10.3168/jds.S0022-0302(03)73803-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Javier Houspanossian
    • 1
    • 2
    Email author
  • Sylvain Kuppel
    • 1
    • 3
  • Marcelo Nosetto
    • 1
    • 4
  • Carlos Di Bella
    • 5
    • 6
  • Patricio Oricchio
    • 5
  • Mariana Barrucand
    • 7
  • Matilde Rusticucci
    • 7
  • Esteban Jobbágy
    • 1
  1. 1.CONICETSan LuisArgentina
  2. 2.Facultad de Ciencias Físico Matemáticas y NaturalesUniversidad Nacional de San LuisSan LuisArgentina
  3. 3.Northern Rivers Institute, School of GeosciencesUniversity of AberdeenAberdeenUK
  4. 4.Cátedra de Climatología Agrícola, Facultad de Ciencias AgropecuariasUniversidad Nacional de Entre RíosOro VerdeArgentina
  5. 5.INTA – Instituto de Clima y AguaBuenos AiresArgentina
  6. 6.Departamento de Métodos Cuantitativos, Facultad de AgronomíaUniversidad de Buenos Aires & CONICETBuenos AiresArgentina
  7. 7.Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires & CONICETBuenos AiresArgentina

Personalised recommendations